SIEMENS

SINAMICS G120C

SIEMENS

	Parameters	2
SINAMICS	Function diagrams	$\mathbf{3}$
SINAMICS G120C	Faults and alarms	$\mathbf{4}$
	Appendix	\mathbf{A}
List Manual	Index	

Valid for
Drive
SINAMICS G120C
Firmware version
4.7 SP9

Fundamental safety instructions

Index

Legal information

Warning concept

This Manual contains information which you must observe to ensure your own personal safety as well as to avoid material damage. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to equipment damage have no safety alert symbol. Depending on the hazard level, warnings are indicated in a descending order as follows:

DANGER

indicates that death or serious injury will result if proper precautions are not taken.

WARNING

indicates that death or serious injury could result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one level of danger is simultaneously applicable, the warning notice for the highest level is used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified personnel

The product/system described in this documentation may only be operated by personnel qualified for the specific task in accordance with the relevant documentation for the specific task, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

WARNING

Siemens products are only permitted to be used for the applications envisaged in the catalog and in the associated technical documentation. If third-party products and components are to be used, they must be recommended or approved by Siemens. These products can only function correctly and safely if they are transported, stored, set up, mounted, installed, commissioned, operated and maintained correctly. The permissible ambient conditions must be adhered to. Information in the associated documentation must be observed.

Trademarks

All names identified with ${ }^{\circledR}$ are registered trademarks of Siemens AG. Any other names used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of liability

We have verified that the contents of this document correspond to the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. The information given in this document is reviewed at regular intervals and any corrections that might be necessary are made in the subsequent editions.

Table of contents

1 Fundamental safety instructions 7
1.1 General safety instructions 8
1.2 Warranty and liability for application examples 8
1.3 Industrial security 9
2 Parameters 11
2.1 Overview of parameters 12
2.1.1 Explanation of the parameter list 12
2.1.2 Number ranges of parameters 22
2.2 List of parameters 25
2.3 Parameters for data sets 419
2.3.1 Command Data Sets (CDS) 419
2.3.2 Drive Data Sets (DDS) 420
2.3.3 Motor data sets (MDS) 425
2.3.4 Power unit Data Sets (PDS) 427
2.3.5 Encoder Data Sets (EDS) 427
2.4 BICO parameters (connectors/binectors). 428
2.4.1 Binector inputs (BI) 428
2.4.2 Connector inputs (CI) 430
2.4.3 Binector outputs (BO). 431
2.4.4 Connector outputs (CO) 433
2.4.5 Connector/binector outputs (CO/BO) 436
2.5 Parameters for write protection and know-how protection 437
2.5.1 Parameters with "WRITE_NO_LOCK" 437
2.5.2 Parameters with "KHP_WRITE_NO_LOCK" 437
2.5.3 Parameters with "KHP_ACTIVE_READ" 438
2.6 Quick commissioning (p0010 = 1) 439
3 Function diagrams 441
3.1 Table of contents 442
3.2 Explanations on the function diagrams 448
3.3 Input/output terminals 453
3.4 PROFlenergy 462
3.5 Communication PROFIdrive (PROFIBUS/PROFINET), EtherNet/IP 465
3.6 CANopen communication 481
3.7 Communication fieldbus interface (USS, Modbus) 488
3.8 Internal control/status words 494
3.9 Brake control 511
3.10 Safety Integrated Basic functions 513
3.11 Safety Integrated PROFIsafe 519
3.12 Setpoint channel 521
3.13 Vector control / U/f control 530
3.14 U/f control, Standard Drive Control (p0096 = 1) 556
3.15 Vector control, Dynamic Drive Control (p0096 = 2) 562
3.16 Technology functions 579
3.17 Free function blocks 582
3.18 Technology controller 603
3.19 Signals and monitoring functions 608
3.20 Diagnostics 620
3.21 Data sets 626
4 Faults and alarms 629
4.1 Overview of faults and alarms 630
4.1.1 General 630
4.1.2 Explanation of the list of faults and alarms. 634
4.1.3 Number ranges of faults and alarms 639
4.2 List of faults and alarms 641
A Appendix 731
A. 1 ASCII table (characters that can be displayed) 732
A. 2 List of abbreviations 735
Index 745

Fundamental safety instructions

Content

1.1 General safety instructions 8
1.2 Warranty and liability for application examples 8
1.3 Industrial security 9

1.1 General safety instructions

WARNING

Danger to life if the safety instructions and residual risks are not observed

If the safety instructions and residual risks in the associated hardware documentation are not observed, accidents involving severe injuries or death can occur.

- Observe the safety instructions given in the hardware documentation.
- Consider the residual risks for the risk evaluation.

WARNING

Malfunctions of the machine as a result of incorrect or changed parameter settings
As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization (parameter assignments) against unauthorized access.
- Handle possible malfunctions by taking suitable measures, e.g. emergency stop or emergency off.

1.2 Warranty and liability for application examples

The application examples are not binding and do not claim to be complete regarding configuration, equipment or any eventuality which may arise. The application examples do not represent specific customer solutions, but are only intended to provide support for typical tasks. You are responsible for the proper operation of the described products. These application examples do not relieve you of your responsibility for safe handling when using, installing, operating and maintaining the equipment.

1.3 Industrial security

Note

Industrial security

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions only represent one component of such a concept.

The customer is responsible for preventing unauthorized access to its plants, systems, machines and networks. Systems, machines and components should only be connected to the enterprise network or the internet if and to the extent necessary and with appropriate security measures (e.g. use of firewalls and network segmentation) in place.
Additionally, Siemens' guidance on appropriate security measures should be taken into account. For more information about industrial security, please visit:

Industrial security (http://www.siemens.com/industrialsecurity).
Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends to apply product updates as soon as available and to always use the latest product versions. Use of product versions that are no longer supported, and failure to apply latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed at:

Industrial security (http://www.siemens.com/industrialsecurity).

WARNING

Unsafe operating states resulting from software manipulation

Software manipulations (e.g. viruses, trojans, malware or worms) can cause unsafe operating states in your system that may lead to death, serious injury, and property damage.

- Keep the software up to date.
- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.
- Make sure that you include all installed products into the holistic industrial security concept.
- Protect files stored on exchangeable storage media from malicious software by with suitable protection measures, e.g. virus scanners.

1 Fundamental safety instructions
1.3 Industrial security

Parameters

Content

2.1 Overview of parameters 12
2.2 List of parameters 25
2.3 Parameters for data sets 419
2.4 BICO parameters (connectors/binectors) 428
2.5 Parameters for write protection and know-how protection 437
2.6 Quick commissioning (p0010 = 1) 439

2.1 Overview of parameters

2.1.1 Explanation of the parameter list

Basic structure of the parameter descriptions

The data in the following example have been chosen at random. The table below contains all the information that can be included in a parameter description. Some of the information is optional.
The "List of parameters (Page 25)" has the following structure:

Start of example

End of example

The individual pieces of information are described in detail below.

pxxxx[0...n] Parameter number

The parameter number is made up of a " p " or " r ", followed by the parameter number and the index or bit field (optional)

Examples of the representation in the parameter list:

- p... Adjustable parameters (read and write)
- r... Display parameters (read only)
- p0918 Adjustable parameter 918
- p2051[0...13] Adjustable parameter 2051, indices 0 to 13
- p1001[0...n] Adjustable parameter 1001, indices 0 to n ($\mathrm{n}=$ configurable)
- r0944 Display parameter 944
- r2129.0... 15 Display parameter 2129 with bit field from bit 0 (smallest bit) to bit 15 (largest bit)

Other examples of notation in the documentation:

- p1070[1] Adjustable parameter 1070, index 1
- p2098[1]. 3 Adjustable parameter 2098, index 1 bit 3
- p0795.4 Adjustable parameter 795, bit 4

The following applies to adjustable parameters:
The parameter value as delivered is specified under "Factory setting" with the relevant unit in square brackets. The value can be adjusted within the range defined by "Min" and "Max".

The term "linked parameterization" is used in cases where changes to adjustable parameters affect the settings of other parameters.

Linked parameterization can occur, for example, as a result of the following actions and parameters:

- Setting the PROFIBUS telegram (BICO interconnection)
p0922
- Setting component lists
p0230, p0300, p0301, p0400
- Automatically calculating and pre-assigning
p0340, p3900
- Restoring the factory settings
p0970
The following applies to display parameters:
The fields "Min", "Max" and "Factory setting" are specified with a dash "-" and the relevant unit in square parentheses.

Note

The parameter list can contain parameters that are not visible in the expert lists of the particular commissioning software (e.g. parameters for trace functions).

BICO: Full parameter name/Abbreviated name

The following abbreviations can appear in front of the BICO parameter name:

- BI: Binector Input

This parameter is used for selecting the source of a digital signal.

- BO: Binector Output

This parameter is available as a digital signal for interconnection with other parameters.

- CI: Connector Input

This parameter is used for selecting the source of an "analog" signal.

- CO: Connector Output

This parameter is available as an "analog" signal for interconnection with other parameters.

- CO/BO: Connector/Binector Output

This parameter is available as an "analog" and digital signal for interconnection with other parameters.

Note

A BICO input ($\mathrm{BI} / \mathrm{CI}$) cannot be interconnected with just any BICO output $(\mathrm{BO} / \mathrm{CO}$, signal source).
When interconnecting a BICO input using the commissioning software, only the corresponding possible signal sources are listed.

Function diagrams 1020 ... 1030 explain the symbols for BICO parameters and how to deal with BICO technology.

G120C variants

Specifies for which G120C variants (communication) the parameter is valid is. If no G120C variant is listed, then the parameter is valid for all variants.

The following information relating to "G120C variants" can be displayed under theparameter number:

Table 2-1 Information in the "CU/PM variants" field

CU/PM variants	Meaning
	All G120C variants have this parameter.
G120C_CAN	G120C with CAN interface
G120C_DP	G120C with PROFIBUS interface
G120C_PN	G120C with PROFINET interface
G120C_USS	G120C with USS interface

Access level

Specifies the minimum access level required to be able to display and change the relevant parameter. The required access level can be set using p0003.

The system uses the following access levels:

- 1: Standard (not adjustable, included in p0003 = 3)
- 2: Extended (not adjustable, included in p0003 = 3)
- 3: Expert
- 4: Service

Parameters with this access level are password protected.

Note

Parameter p0003 is CU-specific (belongs to the Control Unit).
A higher access level will also include the functions of the lower levels.

Calculated

Specifies whether the parameter is influenced by automatic calculations.
p0340 determines which calculations are to be performed:

- $\mathrm{p} 0340=1$ includes the calculations from p0340 $=2,3,4,5$.
- p0340 $=2$ calculates the motor parameters (p0350 ... p0360, p0625).
- $\mathrm{p} 0340=3$ includes the calculations from $\mathrm{p} 0340=4,5$.
- p0340 $=4$ only calculates the controller parameters.
- p0340 $=5$ only calculates the controller limits.

Note

For $\mathrm{p} 3900>0, \mathrm{p} 0340=1$ is also called automatically.
After $\mathrm{p} 1900=1,2, \mathrm{p} 0340=3$ is also called automatically.
Parameters with a reference to p0340 after "Calculated" depend on the Power Module being used and the motor. In this case, the values at "Factory setting" do not correspond to the actual values because these values are calculated during the commissioning. This also applies to the motor parameters.

Data type

The information on the data type can consist of the following two items (separated by a slash):

- First item

Data type of the parameter

- Second item (for binector or connector input only)

Data type of the signal source to be interconnected (binector-/connector output).
Parameters can have the following data types:

- Integer8 18 8-bit integer number
- Integer16 116 16-bit integer number
- Integer32 132 32-bit integer number
- Unsigned8 U8 8 bits without sign
- Unsigned16 U16 16 bits without sign
- Unsigned32 U32 32 bits without sign
- FloatingPoint32 Float 32-bit floating point number

Depending on the data type of the BICO input parameter (signal sink) and BICO-output parameter (signal source), the following combinations are possible when creating BICO-interconnections:

Table 2-2 Possible combinations of BICO interconnections

		BICO in	arameter	
		Cl parameter		BI parameter
BICO output parameter	Unsigned32 I Integer16	Unsigned32 I Integer32	Unsigned 32 I FloatingPoint32	Unsigned32 / Binary
CO: Unsigned8	x	x	-	-
CO: Unsigned16	x	x	-	-
CO: Unsigned32	X	x	-	-
CO: Integer16	x	x	r2050	-
CO: Integer32	X	x	r2060	-
CO: FloatingPoint32	x	x	x	-
BO: Unsigned8	-	-	-	x
BO: Unsigned16	-	-	-	x
BO: Unsigned32	-	-	-	x
BO: Integer16	-	-	-	x
BO: Integer32	-	-	-	x
BO: FloatingPoint32	-	-	-	-
Legend:	BICO interconne BICO interconne CO interconnection	permitted ormitted nly permitted for	pecified CO param	

Can be changed

The "-" sign indicates that the parameter can be changed in any object state and that the change will be effective immediately.

The information "C(x), T, U" ((x): optional) means that the parameter can be changed only in the specified drive unit state and that the change will not take effect until the unit switches to another state. One or more states are possible.

The following states are available:

- $\mathrm{C}(\mathrm{x})$ Commissioning C: Commissioning

Drive commissioning is in progress ($\mathrm{p} 0010>0$).
Pulses cannot be enabled.
The parameter can only be changed in the following drive commissioning settings (p0010 > 0):

- C: Can be changed for all settings p0010>0.
- $C(x)$: Can only be changed for the settings $p 0010=x$.

A modified parameter value does not take effect until drive commissioning mode is exited with p0010 $=0$.

- U Operation
U: Run Pulses are enabled.
- T Ready T: Ready to run

The pulses are not enabled and the status " $\mathrm{C}(\mathrm{x})$ " is not active.

Normalization

Specification of the reference variable with which a signal value is automatically converted for a BICO interconnection.
The following reference variables are available:

- p2000 ... p2007: Reference speed, reference voltage, etc.
- PERCENT: $1.0=100 \%$
- 4000H: 4000 hex = 100% (wort) or 40000000 hex = 100% (double word)
- p0514: specific normalization

Refer to the description for $p 0514[0 \ldots 9]$ and $p 0515[0 \ldots 19]$ to $p 0524[0 \ldots 19]$

Dyn. index (dynamic index)

For parameters with a dynamic index [0...n], the following information is specified here:

- Data set (if available).
- Parameter for the number of indices ($n=$ number -1).

The following information can be contained in this field:

- "CDS, p0170" (Command Data Set, CDS count)

Example:
p 1070 [0] \rightarrow main setpoint [command data set 0]
p1070[1] \rightarrow main setpoint [command data set 1], etc.

- "DDS, p0180" (Drive Data Set, DDS count)
- "EDS, p0140" (Encoder Data Set, EDS count)
- "MDS, p0130" (Motor Data Set, MDS count)
- "PDS, p0120" (Power unit Data Set, PDS count)

Data sets can only be created and deleted when p0010 = 15.

Note

Information on the data sets can be taken from the following references:
Operating Instructions SINAMICS G120 Frequency Converter G120C.

Unit group and unit selection

The standard unit of a parameter is specified in square parentheses after the values for "Min", "Max", and "Factory setting".

For parameters where the unit can be switched over, the specifications for "Unit group" and "Unit selection" determine the group to which this parameter belongs and with which parameter the unit can be switched over.

Example:

Unit group: 7_1, unit selection: p0505
The parameter belongs to unit group 7_1 and the unit can be switched over using p0505.
All the potential unit groups and possible unit selections are listed below.
Table 2-3 Unit group (p0100)

Unit group	Unit Choice for p0100 =			Reference variable for \%
	0	1	2	
7_4	Nm	lbf ft	Nm	-
14_6	kW	hp	kW	-
25_1	$\mathrm{kg} \mathrm{m}^{2}$	$\mathrm{lb} \mathrm{ft}{ }^{2}$	$\mathrm{kg} \mathrm{m}^{2}$	-
27_1	kg	lb	kg	-
28_1	Nm/A	lbf ft/A	Nm/A	-

Table 2-4 Unit group (p0505)

Unit group	Unit Choice for $\mathbf{p} 0505=$				Reference variable for \%
	1	2	3	4	
2_1	Hz	\%	Hz	\%	p2000
3-1	1 rpm	\%	1 rpm	\%	p2000
5-1	Vrms	\%	Vrms	\%	p2001
5_2	V	\%	V	\%	p2001
5_3	V	\%	V	\%	p2001
6 2	Arms	\%	Arms	\%	p2002
6 -5	A	\%	A	\%	p2002
7_1	Nm	\%	lbf ft	\%	p2003
7_2	Nm	Nm	lbf ft	lbf ft	-
14_5	kW	\%	hp	\%	r2004
14_10	kW	kW	hp	hp	-
21_1	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
21_2	K	K	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
39_1	1/s ${ }^{2}$	\%	$1 / \mathrm{s}^{2}$	\%	p2007

Table 2-5 Unit group (p0595)

Unit group	Unit Choice for p0595 =	Reference variable for \%
	Value	Unit

Function diagram

The parameter is included in this function diagram. The structure of the parameter function and its relationship with other parameters is shown in the specified function diagram.

Parameter values

Min	Minimum value of the parameter [unit]
Max	Maximum value of the parameter [unit]
Factory setting	Value when delivered [unit] In the case of a binector/connector input, the signal source of the default BICO interconnection is specified. A non-indexed connector output is assigned the index [0].

A different value may be displayed for certain parameters (e.g. p1800) at the initial commissioning stage or when establishing the factory settings.
Reason:
The setting of these parameters is determined by the operating environment of the Control Unit (e.g. depending on converter type, power unit).

Description

Explanation of the function of a parameter

Values

Lists the possible values of a parameter.

Recommendation

Information about recommended settings.

Index

The name and meaning of each individual index is specified for indexed parameters.
The following applies to the values (Min, Max, Factory setting) of indexed adjustable parameters:

- Min, Max:

The adjustment range and unit apply to all indices.

- Factory setting:

When all indices have the same factory setting, index 0 is specified with the unit to represent all indices.

When the indices have different factory settings, they are all listed individually with the unit.

Bit field

For parameters with bit fields, the following information is provided about each bit:

- Bit number and signal name
- Meaning for signal states 0 and 1
- Function diagram (FP) (optional).

The signal is shown on this function diagram.

Dependency

Conditions that must be fulfilled in conjunction with this parameter. Also includes special effects that can occur between this parameter and others.

Where necessary, "Refer to:" indicates the following information:

- List of other relevant parameters to be considered.
- List of faults and alarms to be considered.

Safety guidelines

Important information that must be observed to avoid the risk of physical injury or material damage.
Information that must be observed to avoid any problems.
Information that the user may find useful.

Danger The description of this safety notice can be found at the beginning of this
 manual (see "Legal information (Page 4)").

Warning

The description of this safety notice can be found at the beginning of this manual (see "Legal information (Page 4)").

Caution

Notice \quad The description of this safety notice can be found at the beginning of this manual (see "Legal information (Page 4)").

Note Information that the user may find useful.

2.1.2 Number ranges of parameters

Note

The following number ranges represent an overview for all the parameters available for the SINAMICS drive family.

The parameters for the product described in this List Manual are described in detail in "List of parameters (Page 25)".

Parameters are grouped into the following number ranges:
Table 2-6 Number ranges for SINAMICS

Range		Description
From	To	
0000	0099	Display and operation
0100	0199	Commissioning
0200	0299	Power section
0300	0399	Motor
0400	0499	Encoder
0500	0599	Technology and units, motor-specific data, probes
0600	0699	Thermal monitoring, maximum current, operating hours, motor data, central probe
0700	0799	Control Unit terminals, measuring sockets
0800	0839	CDS, DDS data sets, motor changeover
0840	0879	Sequence control (e.g. signal source for ON/OFF1)
0880	0899	ESR, parking, control and status words
0900	0999	PROFIBUS/PROFIdrive
1000	1199	Setpoint channel (e.g. ramp-function generator)
1200	1299	Functions (e.g. motor holding brake)
1300	1399	U/f control
1400	1799	Closed-loop control
1800	1899	Gating unit
1900	1999	Power unit and motor identification
2000	2009	Reference values
2010	2099	Communication (fieldbus)
2100	2139	Faults and alarms
2140	2199	Signals and monitoring
2200	2359	Technology controller
2360	2399	Staging, hibernation
2500	2699	Position control (LR) and basic positioning (EPOS)
2700	2719	Reference values, display

Table 2-6 Number ranges for SINAMICS, continued

Range		Description
From	To	
2720	2729	Load gearbox
2800	2819	Logic operations
2900	2930	Fixed values (e. g. percentage, torque)
3000	3099	Motor identification results
3100	3109	Real-time clock (RTC)
3110	3199	Faults and alarms
3200	3299	Signals and monitoring
3400	3659	Infeed closed-loop control
3660	3699	Voltage Sensing Module (VSM), Braking Module internal
3700	3779	Advanced Positioning Control (APC)
3780	3819	Synchronization
3820	3849	Friction characteristic
3850	3899	Functions (e. g. long stator)
3900	3999	Management
4000	4599	Terminal Board, Terminal Module (e. g. TB30, TM31)
4600	4699	Sensor Module
4700	4799	Trace
4800	4849	Function generator
4950	4999	OA application
5000	5169	Spindle diagnostics
5200	5230	Current setpoint filter 5 ... 10 (r0108.21)
5400	5499	System droop control (e. g. shaft generator)
5500	5599	Dynamic grid support (solar)
5600	5614	PROFlenergy
5900	6999	SINAMICS GM/SM/GL/SL
7000	7499	Parallel connection of power units
7500	7599	SINAMICS SM120
7700	7729	External messages
7770	7789	NVRAM, system parameters
7800	7839	EEPROM read/write parameters
7840	8399	Internal system parameters
8400	8449	Real-time clock (RTC)
8500	8599	Data and macro management
8600	8799	CAN bus
8800	8899	Communication Board Ethernet (CBE), PROFIdrive

Table 2-6 Number ranges for SINAMICS, continued

Range		Description
From	To	
8900	8999	Industrial Ethernet, PROFINET, CBE20
9000	9299	topology
9300	9399	Safety Integrated
9400	9499	Parameter consistency and storage
9500	9899	Safety Integrated
9900	9949	topology
9950	9999	Diagnostics, internal
10000	10199	Safety Integrated
11000	11299	Free technology controller 0, 1, 2
20000	20999	Free function blocks (FBLOCKS)
21000	25999	Drive Control Chart (DCC)
50000	53999	SINAMICS DC MASTER (closed-loop DC current control)
61000	61001	PROFINET

2.2 List of parameters

Product: SINAMICS G120C, Version: 4710100, Language: eng
Objects: G120C USS, G120C DP, G120C CAN, G120C PN

r0002	Drive operating display / Drv op_display		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	200	-
Description:	Operating display for the drive.		
Value:	0 : Operation - everything enabled		
	10: Operation - set "enable setpoint" = "1"		
	12: Operation - RFG frozen, set "RFG start" = "1"		
	13: Operation - set "enable RFG" = "1"		
	14: Operation - MotID, excitation running		
	15: Operation - open brake (p1215)		
	16: Operation - withdraw braking with OFF1 using "ON		
	17: Operation - braking with OFF3 can only be interr		
	18: Operation - brake on fault, remove fault, acknow		
	19: Operation - DC brak	$(\mathrm{p} 1230, \mathrm{p} 1231)$	
	21: Ready for operation	able operation" = "1	
	22: Ready for operation	netizing running (p034	
	31: Ready for switching	ON/OFF1" = "0/1"	
	35: Switching-on inhibit	out first commission	
	41: Switching-on inhibit	N/OFF1" = "0" (p08	
	42: Switching-on inhibit	C/OFF2" = "1" (p08	
	43: Switching-on inhibit	C/OFF3" = "1" (p08	
	44: Switching-on inhibit	STO terminal w/ 2	
	45: Switching-on inhibit	fault, acknowledge	
	46: Switching-on inhibit	mmissioning mode	
	70: Initialization		
	200: Wait for booting/par		
Dependency:	Refer to: r0046		
Notice:	For several missing enable signals, the corresponding value with the highest number is displayed.		
Note:	OC: Operating condition		
	RFG: Ramp-function generator		
	COMM: Commissioning		
	MotID: Motor data identification		
p0003	Access level / Acc_level		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C, U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	3	4	3
Description: Sets the access level to rea		e parameters.	
Value:	$\begin{array}{ll}\text { 3: } & \text { Expert } \\ \text { 4: } & \text { Service }\end{array}$		
Note:	A higher set access level also includes the lower one.		
	Access level 3 (experts):		
	Expert know-how is required for these parameters (e.g. BICO parameterization).		
	Access level 4 (service):		
	For these parameters, it is necessary that authorized service personnel enter the appropriate password (p3950).		

$\overline{p 0010}$	Drive commissioning parameter filter / Drv comm. par_filt		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2800, 2818
	Min	Max	Factory setting
	0	95	1
Description:	Sets the parameter filter to commission a drive.		
	Setting this parameter filters out the parameters that can be written into in the various commissioning steps.		
Value:	0: Ready		
	1: Quick commissionin		
	2: Power unit commissioni		
	3: Motor commissioning		
	5: Technological application/unit		
	15: Data sets		
	29: Only Siemens internal		
	30: Parameter reset		
	39: Only Siemens interna		
	49: Only Siemens internal		
	95: Safety Integrated commissionin		
Dependency:	Refer to: r3996		
Notice:	When the parameter is reset to a value of 0 , short-term communication interruptions may occur.		
Note:	The drive can only be switched on outside the drive commissioning (inverter enable). To realize this, this parameter must be set to 0 .		
	By setting p3900 to a value other than 0 , the quick commissioning is completed, and this parameter is automatically reset to 0 .		
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
	Once the Control Unit has been booted up for the first time, the motor parameters suitable for the power unit have been defined, and the control parameters have been calculated accordingly, p0010 is automatically reset to 0 .		
	p0010 $=3$ is used for the subsequent commissioning of additional drive data sets (creating data sets: see p0010 $=$ 15).		
	p0010 $=29,39,49$ Only for internal Siemens use!		
p0015	Macro drive unit / Macro drv unit		
G120C_DP	Access level: 1	Calculated: -	Data type: Unsigned32
G120C_PN	Can be changed: C, C(1)	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	999999	7
Description: Notice:	Runs the corresponding macro files.		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
	When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	Macros available as standard are described in the technical documentation of the particular product.		
p0015	Macro drive unit / Ma	unit	
G120C_USS	Access level: 1	Calculated: -	Data type: Unsigned32
G120C_CAN	Can be changed: C, C(1)	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
		Max	Factory setting
		999999	12
Description: Notice:	Runs the corresponding macro files.		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
	When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	Macros available as standa	cribed in the techni	of the particular product.

r0018	Control Unit firmware version / Firmware version		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	-
Description:	Displays the firmware version of the Control Unit.		
Dependency:	Refer to: r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V 01.01.01.00.		
r0020	Speed setpoint smoothed / Speed setpoint		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 5020, 6799
			Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the currently smoothed speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator).		
Dependency:	Refer to: r0060		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed setpoint is available smoothed (r0020) and unsmoothed (r0060).		
r0021	CO: Actual speed smoothed / Actual speed		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 6799
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the calculated and smoothed rotor speed.		
	Frequency components from the slip compensation (for induction motors) are not included.		
Dependency:	Refer to: r0022, r0063		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		
r0022	Actual speed rpm smoothed / Actual speed		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6799
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the calculated and smoothed rotor speed.		
	Frequency components from the slip compensation (for induction motors) are not included. r0022 is identical to r0021, however, it always has units of rpm and contrary to r0021 cannot be changed over.		
Dependency:	Refer to: r0021, r0063		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		

2.2 List of parameters

r0024	Output frequency smoothed / Output frequency		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6300, 6799
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the smoothed output frequency.		
	Frequency components from the slip compensation (for induction motors) are included.		
Dependency:	Refer to: r0066		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The output frequency is available smoothed (r0024) and unsmoothed (r0066).		
r0025	CO: Output voltage smoothed / U_outp smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 5730, 6300, 6799
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the smoothed output voltage of the power unit.		
Dependency:	Refer to: r0072		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The output voltage is available smoothed (r0025) and unsmoothed (r0072).		

r0026	CO: DC link voltage smoothed / Vdc smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6799
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the smoothed actual value of the DC link voltage.		
Dependency:	Refer to: r0070		
Notice:	When measuring a DC link voltage < 200 V , for the Power Module a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
	r0026 sets itself to the lower value of the pulsating DC link voltage.		

Access level: 2	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: p2002	Dyn. index: -
Unit group: -	Unit selection: -	Func. diagram: 5730, 6799, 8850,
	Max	8950
Min	$-[$ Arms $]$	Factory setting
$-[$ Arms $]$	$-[A r m s]$	
Displays the smoothed absolute actual current value.		
Refer to: r0068		
This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		

Note: | Smoothing time constant $=300 \mathrm{~ms}$ |
| :--- |
| The signal is not suitable as a process quantity and may only be used as a display quantity. |
| The absolute current actual value is available smoothed (r0027) and unsmoothed (r0068). |

r0028	Modulation depth smoothed / Mod_depth smth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: $5730,6799,8950$
	Min	$-[\%]$	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the smoothed actual value of the modulation depth.		
Dependency:	Refer to: r0074		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The modulation depth is available smoothed (r0028) and unsmoothed (r0074).		

r0029	Current actual value field-generating smoothed / Id_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6799
	Min	Max	Factory setting
	$-[$ Arms $]$	- [Arms $]$	
Description:	Displays the smoothed field-generating actual current.		
Dependency:	Refer to: r0076		
Note:	Smoothing time constant = 300 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		

r0030	Current actual value torque-generating smoothed / lq_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6799
	Min	$-[$ Arms $]$	Factory setting
	$-[$ Arms $]$	- [Arms $]$	
Description:	Displays the smoothed torque-generating actual current.		
Dependency:	Refer to: r0078		
Note:	Smoothing time constant $=300$ ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque-generating current actual value is available smoothed (r0030) and unsmoothed (r0078).		

r0031

Actual torque smoothed / Actual torque		
Access level: 2	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: p2003	Dyn. index: -
Unit group: 7_1	Unit selection: p0505	Func. diagram: 5730, 6799
Min	Max	Factory setting
- [Nm]	- [Nm]	- [Nm]
Displays the smoothed torque actual value.		
Refer to: r0080		
Smoothing time constant $=100 \mathrm{~ms}$		
The signal is not suitable as a process quantity and may only be used as a display quantity.		
The torque actual value is available smoothed (r0031) and unsmoothed (r0080).		

2.2 List of parameters

r0032	CO: Active power actual value smoothed / Power		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dyn. index:-
	Unit group: 14_10	Unit selection: p0505	Func. diagram: 5730, 6799, 8750, 8850, 8950
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the smoothed actual value of the active power.		
Dependency:	Refer to: r0082		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	Power delivered at the motor shaft.		
	The active power is available smoothed (r0032 with 100 ms) and unsmoothed (r0082).		
r0033	Torque utilization smoothed / M_util smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the smoothed torque utilization as a percentage.		
Dependency:	This parameter is only available for vector control. For U/f control r0033 $=0 \%$.		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque utilization is available smoothed (r0033) and unsmoothed (r0081).		
	For M_set total (r0079) > 0, the following applies:		
	- Required torque = M_set total		
	- Actual torque limit = M_max upper effective (r1538)		
	For M_set total (r0079) < $=0$, the following applies:		
	- Required torque $=-\mathrm{M}$ _set total		
	- Actual torque limit = - M_max lower effective (r1539)		
	For the actual torque limit = 0, the following applies: $\mathrm{r0033}=100 \%$		
	For the actual torque limit < 0, the following applies: r0033 $=0 \%$		
r0034	CO: Motor utilization thermal / Mot_util therm		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8017
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the motor utilization from motor temperature model 1 (12t).		
	For firmware version < 4.7 SP6 or p0612.12 = 0:		
	- r0034 = (motor model temperature - 40 K) / (p0605-40 K) * 100 \%		
	From firmware version 4.7 SP6 and p0612.12 = 1:		
	- r0034 = (motor model temperature - p0613) / (p0605-p0613) * 100 \%		
Dependency:	The thermal motor utilization is only determined when the motor temperature model 1 (12t) is activated.		
	The following conditions are a prerequisite for additional information.		
	- a temperature sensor has not been parameterized (p0600, p0601).		
	- the current corresponds to the stall current (p 0318).		
	- speed $\mathrm{n}>1$ [rpm].		
	For firmware version $<4.7 \mathrm{SP} 6$ or p0612.12 $=0$, the following applies:- the temperature model operates with an ambient temperature of $20^{\circ} \mathrm{C}$.		

r0036	CO: Power unit overload I2t / PM overload 12t		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 8021
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the power unit overload determined using the 12 t calculation.		
	A current reference value is defined for the $12 t$ monitoring of the power unit. It represents the current that can be conducted by the power unit without any influence of the switching losses (e.g. the continuously permissible current of the capacitors, inductances, busbars, etc.).		
	If the 12 t reference current of the power unit is not exceeded, then an overload (0%) is not displayed.		
	In the other case, the degree of thermal overload is calculated, whereby 100% results in a trip.		
Dependency:	Refer to: p0290		
	Refer to: F30005		
r0037[0...19]	CO: Power unit temperatures / PM temperatures		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index:-
	Unit group: 21_1	Unit selection: p0505	Func. diagram: 8021
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	- $\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Display and connector output for the temperature in the power unit.		
Index:	[0] = Inverter maximum value [1] = Depletion layer maximum value [2] = Rectifier maximum value		

2.2 List of parameters

	[3] = Air intake
	[4] = Interior of power unit
	[5] = Inverter 1
	[6] = Inverter 2
	[7...10] = Reserved
	[11] = Rectifier 1
	[12] = Reserved
	[13] = Depletion layer 1
	[14] = Depletion layer 2
	[15] = Depletion layer 3
	[16] = Depletion layer 4
	[17] = Depletion layer 5
	[18] = Depletion layer 6
	[19] = Reserved
Notice:	Only for internal Siemens troubleshooting.
Note:	The value of -200 indicates that there is no measuring signal.
	r0037[0]: Maximum value of the inverter temperatures (r0037[5...10]).
	r0037[1]: Maximum value of the depletion layer temperatures (r0037[13...18]).
	r0037[2]: Maximum value of the rectifier temperatures (r0037[11...12]).
	The maximum value is the temperature of the hottest inverter, depletion layer, or rectifier. r0037[2, 3, 6, 11, 14...18] is only relevant for chassis power units.
	In the case of a fault, the particular shutdown threshold depends on the power unit, and

r0038	Power factor smoothed / Cos phi smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6799, 8850, 8950
	Min	Max	Factory setting
	-	-	-
Description:	Displays the smoothed actual power factor. This refers to the electrical power of the basic fundamental signals at the converter output terminals.		
Notice:	For infeed units, the following applies:		
	For active powers < 25% of the rated power, this does not provide any useful information.		
Note:	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
r0039[0...2]	CO: Energy display / Energy display		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [kWh]	- [kWh]	- [kWh]
Description:	Displays the energy values at the output terminals of the power unit.		
Recommendation:	r0042 should be used as process energy display. R0039 supplies as Bico source floating point values in Ws.		
Index:	$\begin{aligned} & {[0]=\text { Energy balanc }} \\ & {[1]=\text { Energy drawn }} \\ & {[2]=\text { Energy fed bac }} \end{aligned}$		
Dependency:	Refer to: p0040		
Note:	For index 0 :		
	Difference between the energy drawn and energy that is fed back.		

p0045	Display values smoothing time constant / Disp_val T_smooth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6714,8012
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$10000.00[\mathrm{~ms}]$	$4.00[\mathrm{~ms}]$
Description:	Sets the smoothing time constant for the following display values:		
	r0063[1], ro068[1], r0080[1], r0082[1].		

r0046.0...31	CO/BO: Missing enable signal / Missing enable sig		
	Access level: 1	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2634
	Min	Max	Factory setting

Description: Display and BICO output for missing enable signals that are preventing the closed-loop drive control from being

Bit field:

Dependency: Refer to: r0002

Note: \quad The value $\mathrm{r} 0046=0$ indicates that all enable signals for this drive are present.
Bit $00=1$ (enable signal missing), if:

- the signal source in p0840 is a 0 signal.
- there is a "switching-on inhibited".

Bit $01=1$ (enable signal missing), if:

- the signal source in p0844 or p0845 is a 0 signal.

Bit $02=1$ (enable signal missing), if:

- the signal source in p0848 or p0849 is a 0 signal.

Bit $03=1$ (enable signal missing), if:

- the signal source in p0852 is a 0 signal.

Bit $04=1$ (DC brake active) when:

- the signal source in p1230 has a 1 signal.

Bit $08=1$ (enable signal missing), if:

- safety functions have been enabled and STO is active.
- STO is selected via onboard terminals or PROFIsafe.
- a safety-relevant signal is present with STOP A response.
- the "STO via terminals at the Power Module" function is selected.

2.2 List of parameters

250:	Identification stator inductance LQLD
260:	Identification circuit
270:	Identification stator resistance
$290:$	Identification valve lockout time
$300:$	Stationary measurement selected

r0050.0...	CO/BO: Command Data Set CDS effective / CDS effective			
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagram: 8560	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the effective Command Data Set (CDS).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 CDS effective bit 0	ON	OFF	-
	01 CDS effective bit 1	ON	OFF	-
Dependency:	Refer to: p0810, r0836			
Note:	The Command Data Set selected using a binector input (e.g. p0810) is displayed using r0836.			
r0051.0	CO/BO: Drive Data Set DDS effective / DDS effective			
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagram: 8565	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the effective Drive Data Set (DDS).			
Bit field:	Bit Signal name 00 DDS effective bit 0	1 signal ON	0 signal OFF	FP
Dependency:	Refer to: p0820, r0837			
Note:	When selecting the motor data identification routine and the rotating measurement, the drive data set changeover is suppressed.			

r0052.0... 15	CO/BO: Status word 1 / ZSW 1				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and connector output for status word 1.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Ready for switching on	Yes	No	-
	01	Ready	Yes	No	-
	02	Operation enabled	Yes	No	-
	03	Fault present	Yes	No	-
	04	Coast down active (OFF2)	No	Yes	-
	05	Quick Stop active (OFF3)	No	Yes	-
	06	Switching-on inhibited active	Yes	No	-
	07	Alarm present	Yes	No	-
	08	Deviation setpoint/actual speed	No	Yes	-
	09	Control request	Yes	No	-
	10	Maximum speed reached	Yes	No	-
	11	I, M, P limit reached	No	Yes	-
	12	Motor holding brake open	Yes	No	-
	13	Alarm motor overtemperature	No	Yes	-
	14	Motor rotates forwards	Yes	No	-
	15	Alarm drive converter overload	No	Yes	-

2.2 List of parameters

r0054.0.. 15	CO/BO: Control word $1 /$ STW 1				
			Calculated: -	Data type: Unsigned16	
	Can be changed: - S		Scaling: -	Dyn. index: -	
	Unit group: - U		Unit selection: -	Func. diagram: -	
	Min M			Factory setting	
	-	-	-	-	
Description:	Displays control word 1.				
Bit field:		Signal name	1 signal	0 signal	FP
		ON/OFF1	Yes	No	-
	01	OC / OFF2	No	Yes	-
	02	OC / OFF3	No	Yes	-
	03	Enable operation	Yes	No	-
	04	Enable ramp-function generator	Yes	No	-
	05	Continue ramp-function generator	or Yes	No	-
	06	Enable speed setpoint	Yes	No	-
	07	Acknowledge fault	Yes	No	-
	08	Jog bit 0	Yes	No	3030
	09	Jog bit 1	Yes	No	3030
		Master control by PLC	Yes	No	-
		Direction reversal (setpoint)	Yes	No	-
		Motorized potentiometer raise	Yes	No	-
		Motorized potentiometer lower	Yes	No	-
		CDS bit 0	Yes	No	-
Note:	The following control bits are displayed in r0054:				
	Bit 00: r0898 Bit 0				
	Bit 01: r0898 Bit 1				
	Bit 02: r0898 Bit 2				
	Bit 03: r0898 Bit 3				
	Bit 04: r0898 Bit 4				
	Bit 05: r0898 Bit 5				
	Bit 06: r0898 Bit 6				
	Bit 07: r2138 Bit 7				
	Bit 08: r0898 Bit 8				
	Bit 09: r0898 Bit 9				
	Bit 10: r0898 Bit 10				
	Bit 11: r1198 Bit 11				
	Bit 13: r1198 Bit 13				
	Bit 14: r1198 Bit 14				
	Bit 15: r0836 Bit 0				
r0055.0... 15	CO/BO: Supplementary control word / Suppl STW				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: - S		Scaling: -	Dyn. index: -	
	Unit group: - U		Unit selection: -	Func. diagram: 2513	
	Min M		Max	Factory setting	
	- -				
Description:	Display and BICO output for supplementary control word.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Fixed setpoint bit 0	Yes	No	-
	01	Fixed setpoint bit 1	Yes	No	-
	02	Fixed setpoint bit 2	Yes	No	-
	03	Fixed setpoint bit 3	Yes	No	-
	04	DDS selection bit 0	Yes	No	-
	05	Reserved	Yes	No	-
	08	Technology controller enable	Yes	No	-

2.2 List of parameters

r0062	CO: Speed setpoint after the filter / n_set after filter		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 6020, 6030, 6031
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the speed setpoint after the setpoint filters.		
r0063[0...2]	CO: Actual speed / Actual speed		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 6020, 6799
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the speed actual value.		
	Frequency components from the slip compensation (for induction motors) are not included.		
Index:	[0] = Unsmoothed [1] = Smoothed with p0045 [2] = Calculated from f_set - f_slip (unsmoothed)		
Dependency:	Refer to: r0021, r0022		
Note:	The speed actual value r0063[0] - smoothed with p0045 - is additionally displayed in r0063[1]. r0063[1] can be used as process variable for the appropriate smoothing time constant p0045.		
	The speed (r0063[2]) calculated from the output frequency and slip can only be compared with the speed actual value (r0063[0]) in the steady-state.		
	For U/f control, the mechanical speed calculated from the output frequency and the slip is shown in r0063[2] even if slip compensation is deactivated.		
r0064	CO: Speed controller system deviation / n_ctrl sys dev		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 6040
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual system deviation of the speed controller.		
r0065	Slip frequency / f_Slip		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Unit group: 2_1	Unit selection: p0505	Func. diagram: 6310, 6700, 6727, 6730, 6732
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the slip frequency for induction motors (ASM).		
r0066	CO: Output frequency / f_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 2_1	Unit selection: p0505	Func. diagram: 6300, 6700, 6730, 6731, 6799
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Display and connector output for the unsmoothed output frequency of the power unit. Frequency components from the slip compensation (induction motor) are included.		

Dependency:	Refer to: r0024		
Note:	The output frequency is available smoothed (r0024) and unsmoothed (r0066).		
r0067	CO: Output current maximum / Current max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: 6_2	Unit selection: p0505	Func. diagram: 6300, 6640, 6724
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the maximum output current of the power unit.		
Dependency:	The maximum output current is determined by the parameterized current limit and the motor and converter thermal protection.		
	Refer to: p0290, p0640		

r0068[0...1]	CO: Absolute current actual value / I_act abs val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: 6_2	Unit selection: p0505	Func. diagram: 6300, 6714, 6799, 7017, 8017, 8021, 8022
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays actual absolute current.		
Index:	[0] = Unsmoothed		
Dependency:	Refer to: r0027		
Notice:	The value is updated with the current controller sampling time.		
Note:	Absolute current value $=\operatorname{sqrt}\left(1 q^{\wedge} 2+I d^{\wedge} 2\right)$		
	The absolute value of the current actual value is available smoothed (r0027 with 300 ms , r0068[1] with p0045) and unsmoothed (r0068[0]).		

r0069[0...8]	CO: Phase curren	lue / I_phase act va	
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: 6_5	Unit selection: p0505	Func. diagram: 6730, 6731
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Display and connector output for the measured actual phase currents as peak value.		
Index:	[0] = Phase U		
	[1] = Phase V		
	[2] = Phase W		
	[3] = Phase U offset		
	[4] = Phase V offset		
	[5] = Phase W offset		
	[6] = Total U, V, W		
	$[7]=$ Alpha component$[8]=$ Beta component		
Note:	In indices 3 ... 5, the of The sum of the 3 corre	f the 3 phases, which ar rents is displayed in ind	rect the phase currents, are

2.2 List of parameters

r0070	CO: Actual DC link voltage / Vdc act val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: 5_2	Unit selection: p0505	$\begin{aligned} & \text { Func. diagram: } 6723,6724,6730, \\ & 6731,6799 \end{aligned}$
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Display and connector output for the measured actual value of the DC link voltage.		
Dependency:	Refer to: r0026		
Notice:	When measuring a DC link voltage < 200 V , for the Power Module a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
Note:	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0071	Maximum output voltage / Voltage max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: 5_1	Unit selection: p0505	Func. diagram: 6301, 6640, 6700, 6722, 6723, 6724, 6725, 6727
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the maximum output voltage.		
Dependency:	The maximum output voltage depends on the actual DC link voltage (r0070) and the maximum modulation depth (p1803).		
Note:	As the (driven) motor load increases, the maximum output voltage drops as a result of the reduction in DC link voltage.		
r0072	CO: Output voltage / U_output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: 5_1	Unit selection: p0505	Func. diagram: 5700, 6730, 6731, 6799
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connector output for the actual output voltage of the power unit. Refer to: r0025		
Dependency:			
Note:	The output voltage is available smoothed (r0025) and unsmoothed (r0072).		
r0073	Maximum modulation depth / Modulat_depth max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6723, 6724
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the maximum modulation depth. Refer to: p1803		
Dependency:			

r0074	CO: Modulat_depth / Mod_depth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 5730, 6730, 6731, 6799, 8940, 8950
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual modulation depth. Refor to: r0028		
Dependency:			
Note:	For space vector modulation, 100\% corresponds to the maximum output voltage without overcontrol.		
	Values above 100% indicate an overcontrol condition - values below 100% have no overcontrol.		
	The phase voltage (phase-to-phase, rms) is calculated as follows:(r0074 \times r0070) / (sqrt(2) $\times 100 \%$).		
	The modulation depth is available smoothed (r0028) and unsmoothed (r0074).		
r0075	CO: Current setpoint field-generating / Id_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: 6_2	Unit selection: p0505	Func. diagram: 6700, 6714, 6725
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the field-generating current setpoint (Id_set).		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	This value is irrelevant for the U/f control mode.		
r0076	CO: Current actual value field-generating / Id_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: 6_2	Unit selection: p0505	Func. diagram: 5700, 5714, 5730, 6700, 6714, 6799
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the field-generating current actual value (Id_act).		
Dependency:	Refer to: r0029		
Note:	This value is irrelevant for the U/f control mode.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		
r0077	CO: Current setpoint torque-generating / Iq_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: 6_2	Unit selection: p0505	Func. diagram: 6700, 6710
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque-generating current setpoint.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	This value is irrelevant for the U/f control mode.		

2.2 List of parameters

r0078	CO: Current actual value torque-generating / Iq_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: 6_2	Unit selection: p0505	Func. diagram: 6310, 6700, 6714, 6799
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque-generating current actual value (lq_act).		
Dependency:	Refer to: r0030		
Note:	This value is irrelevant for the U/f control mode.		
	The torque-generating current actual value is available smoothed (r0030 with 300 ms) and unsmoothed (r0078).		
r0079	CO: Torque setpoint / M_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 6020, 6060, 6710
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the speed controller.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
r0080[0...1]	CO: Torque actual value / Actual torque		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 6714, 6799
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for actual torque value.		
Index:	[0] = Unsmoothed		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: r0031, p0045		
Note:	The value is available smoothed (r0031 with 100 ms , r0080[1] with p0045) and unsmoothed (r0080[0]).		
r0081	CO: Torque utilization / M_Utilization		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the torque utilization as a percentage.		
	The torque utilization is obtained from the required smoothed torque referred to the torque limit.		
Dependency:	This parameter is only available for vector control. For U/f control r0081 $=0 \%$. Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1) Refer to: r0033		
Note:	The torque utilization is available smoothed (r0033) and unsmoothed (r0081).		
	The torque utilization is obtained from the required torque referred to the torque limit as follows: - Positive torque: r0081 = (r0079/r1538) * 100%		
	- Negative torque: r0081 = (-r0079 / -r1539)* 100%		

r0082[0...2]	CO: Active power actual value / P_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dyn. index: -
	Unit group: 14_5	Unit selection: p0505	Func. diagram: 6714, 6799
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the instantaneous active power.		
Index:	[1] = Smoothed with p0045 [2] = Electric power		
Dependency:	Refer to: r0032		
Note:	The mechanical active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).		
r0083	CO: Flux setpoint / Flex setp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 5722
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the flux setpoint.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
r0084[0...1]	CO: Flux actual value / Flux act val		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6730, 6731
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the flux actual value.		
Index:	[0] = Unsmoothed		
r0087	CO: Actual power factor / Cos phi act		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		-	-
Description:	Displays the actual active power factor.		
	This value refers to the electrical power of the basic fundamental signals at the output terminals of the converter.		
r0089[0...2]	Actual phase voltage / U_phase act val		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: 5_3	Unit selection: p0505	Func. diagram: 6730
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual phase voltage.		
Index:	$\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase } \mathrm{V}} \\ & {[2]=\text { Phase } \mathrm{W}} \end{aligned}$		
Note:	The values are deter	ransistor switch-on duration	

p0096	Application class / Appl_class		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1)$	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 6019
	Min	Max	Factory setting
	0	2	0
Description:	Setting the commissioning and control view for various application classes.		
Value:	0: Expert		
	1: Standard Drive Control (SDC)		
	2: Dynamic Drive Control (DDC)		
Dependency:	The parameter is preset when commissioning the system for the first time and for the factory setting, depending on the power unit that is connected.		
	Depending on the setting, the ability to see control parameters is restricted depending on the particular application. The following applies for p0096>0:		
	The motor data identification routine is preset $(\mathrm{p} 1900=12)$. After the motor data identification, the system immediately goes into operation.		
	The following applies for $00096=1$:		
	A synchronous motor ($\mathrm{p} 0300=2 \mathrm{xx}$) is not possible.		
Note:	When changing p0096 to 1 or 2 , when completing commissioning, fast parameterization should be executed (p3900 >0).		
	Depending on the setting, after quick commissioning and/or automatic parameterization, the procedure for motor data identification as well as the setting of the operating mode and parameterization of the closed-loop control must be appropriately adapted.		

p0100	IEC/NEMA mot stds / IEC/NEMA mot stds		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1)$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2	0
Description:	Defines whether the motor and drive converter power settings (e.g. rated motor power, p0307) are expressed in $[\mathrm{kW}]$ or [hp].		
	Depending on the selection, the rated motor frequency (p0310) is either set to 50 Hz or 60 Hz .		
	For $\mathrm{p} 0100=0,2$, the following applies: The power factor (p 0308) should be parameterized.		
	For $\mathrm{p} 0100=1$, the following applies: The efficiency (p0309) should be parameterized.		
Value:	0: IEC-Motor ($50 \mathrm{~Hz}, \mathrm{Sl}$ units)		
	$\begin{array}{ll}\text { 1: } & \text { NEMA motor (} 60 \mathrm{~Hz}, \text { US units) } \\ \text { 2: } & \text { NEMA motor (} 60 \mathrm{~Hz}, \text { SI units) }\end{array}$		
Dependency:	If p0100 is changed, all of the rated motor parameters are reset. Only then are possible unit changeovers made. The units of all motor parameters are changed that are involved with the selection IEC or NEMA.		
	Refer to: r0206, p0210, p0300, p0304, p0305, p0307, p0308, p0309, p0310, p0311, p0314, p0320, p0322, p0323, p0335, p1800		
Note:	The parameter value is not reset when the factory setting is restored ($\mathrm{p} 0010=30, \mathrm{p} 0970$).		

p0124[0...n]	CU detection via LED / CU detection LED		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: PDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Identification of the Control Unit using an LED.		
Note:	While p0124 =1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate Control Unit.		

2.2 List of parameters

	Index 1:		
	Displays the bootloader version 3 (for CU320-2 and CU310-2)		
	Value 0 means that boot loader 3 is not available.		
Dependency:	Refer to: r0018, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
r0198[0...2]	BIOS/EEPROM data version / BIOS/EEPROM vers		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the BIOS and EEPROM data version.		
	r0198[0]: BIOS version		
	r0198[1]: EEPROM data version EEPROM 0		
	r0198[2]: EEPROM data version EEPROM 1		
Dependency:	Refer to: r0018, r0197		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

p0205	Power unit application / PU application		
	Calculated: -		
	Can be changed: C(1, 2)	Scaling: -	Data type: Integer16

2.2 List of parameters

r0208	Rated power unit line supply voltage / PU U_rated		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min		Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the rated line supply voltage of the power unit.		
	$\text { r0208 = 400: } 380-480 \mathrm{~V}+/-10 \%$		
	r0208 = 500: $500-600 \mathrm{~V}+/-10 \%$		
	r0208 = 690: $660-690 \mathrm{~V}+/-10 \%$		
r0209[0...4]	Power unit maximum current / PU I_max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8750, 8850, 8950
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the maximum output current of the power unit.		
Index:	[0] = Catalog		
	[1] = Load duty cycle with low overload		
	[2] = Load duty cycle with high overload		
	[3] = S1 load duty cycle		
	[4] = S6 load duty cycle		
Dependency:	Refer to: p0205		
p0210	Drive unit line supply voltage / U_connect		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(2), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1 [V]	63000 [V]	400 [V]
Description:	Sets the drive unit supply voltage (rms value of the phase-to-phase line supply voltage).		
Dependency:	Set p1254, p1294 (automatic detection of the Vdc switch-on levels) $=0$.		
	The switch-in thresholds of the Vdc_max controller (r1242, r1282) are then directly determined using p0210.		
Notice:	If, in the switched-off state (pulse inhibit), the supply voltage is higher than the entered value, the Vdc controller may be automatically deactivated in some cases to prevent the motor from accelerating the next time the system is switched on. In this case, an appropriate alarm A07401 is output.		
Note:	Setting ranges for p0210 as a function of the rated power unit voltage:		
	U_rated $=230 \mathrm{~V}$:		
	- p0210 = $200 . . .240 \mathrm{~V}$		
	U_rated $=400 \mathrm{~V}$:		
	- p0210 = $380 . . .480 \mathrm{~V}$		
	U_rated $=690 \mathrm{~V}$:		
	- p0210 = 500 ... 690 V		
p0219	Braking resistor braking power / R_brake P_brake		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,2), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: 14_6	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	0.00 [kW]	20000.00 [kW]	0.00 [kW]
Description:	Sets the braking power of the connected braking resistor.		
Dependency:	Refer to: p1127, p1240, p1280, p1531		

Note: \quad\begin{tabular}{l}
When setting a value for the braking power, the following calculations are made:

$-\mathrm{p} 1240, \mathrm{p} 1280:$ Vdc_max control is deactivated.

$-\mathrm{p} 1531=-\mathrm{p} 0219:$ the power limit when generating is set (limited to -p 1530).

- the minimum ramp-down time is calculated $(\mathrm{p} 1127)$ as a function of p0341, p0342 and p1082 (not for vector control

with speed encoder).

If the parameter is reset again to zero, then the Vdc_max controller is reactivated and the power limit as well as the

ramp-down time are recalculated.
\end{tabular}

p0230	Drive filter type mot	Drv filt type m	
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1,2)$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4	0
Description:	Sets the type of the filter at the motor side.		
Value:	0 : \quad No filter		
	1: Motor reactor		
	2: dv/dt filter		
	3: Sine-wave filter Sie		
	4: Sine-wave filter thir		
Dependency:	The following parameters are influenced using p0230: p0230 $=1$.		
	--> p0233 (power unit, motor reactor) = filter inductance		
	p0230 $=3$:		
	--> p0233 (power unit, motor reactor) = filter inductance		
	--> p0234 (power unit sine-wave filter capacitance) = filter capacitance		
	--> p0290 (power unit overload response) = inhibit pulse frequency reduction		
	--> p1082 (maximum speed) = Fmax filter / pole pair number		
	--> p1800 (pulse frequency) >= nominal pulse frequency of the filter		
	--> p1802 (modulator modes) = space vector modulation without overcontrol		
	p0230 $=4$:		
	--> p0290 (power unit overload response) = inhibit pulse frequency reduction		
	--> p1802 (modulator modes) = space vector modulation without overcontrol		
	The user must set the following parameters according to the data sheet of the sine-wave filter and also the use check whether they are permitted.		
	--> p0233 (power unit, motor reactor) = filter inductance		
	--> p0234 (power unit sine-wave filter capacitance) = filter capacitance		
	--> p1082 (maximum speed) = Fmax filter / pole pair number		
	--> p1800 (pulse frequency) >= nominal pulse frequency of the filter		
	Refer to: p0233, p0234, p0290, p1082, p1800, p1802		
Note:	The parameter cannot be changed if the power unit (e.g. PM260) is equipped with an internal sine-wave filter.		
	For sine-wave filters, the test pulse evaluation to detect short-circuits is always deactivated.		
	If a filter type cannot be selected, then this filter type is not permitted for the power unit.		
	p0230 $=1$:		
	Power units with output reactor are limited to output frequencies of 150 Hz . p0230 = 3:		
	Power units with sine-wave filter are limited to output frequencies of 200 Hz .		

p0233	Power unit motor reactor / PU mot reactor		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,2), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.000[\mathrm{mH}]$	1000.000 [mH]	$0.000[\mathrm{mH}]$
Description:	Enter the inductance of a filter connected at the power unit output.		
Dependency:	This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.		
	Refer to: p0230		
Note:	When exiting the quick commissioning using $\mathrm{p} 3900=1$, the parameter value is set to the value of the defined SIEMENS filter or to zero. For this reason, the parameter value of a third-party filter only has to be entered outside the commissioning phase $(\mathrm{p} 0010=0)$ and then the controller calculation $(\mathrm{p} 0340=3)$ is carried out.		
	The parameter cannot be changed if the power unit has an internal sine-wave filter.		
p0234	Power unit sine-wave filter capacitance / PU sine filter C		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,2), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [$\mu \mathrm{F}$]	1000.000 [F F$]$	0.000 [$\mu \mathrm{F}$]
Description:	Enters the capacitance of a sine-wave filter connected at the power unit output.		
Dependency:	This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit.		
	Refer to: p0230		
Note:	The parameter value includes the sum of all of the capacitances of a phase connected in series (phase - ground). When exiting the quick commissioning using $\mathrm{p} 3900=1$, the parameter value is set to the value of the defined SIEMENS filter or to zero. For this reason, the parameter value of a third-party filter only has to be entered outside the commissioning phase ($\mathrm{p} 0010=0$). The parameter cannot be changed if the power unit has an internal sine-wave filter.		
p0235	Motor reactor in series number / L_mot in SeriesQty		
	Access level: 2	Calculated: -	Data type: Unsigned8
	Can be changed: $\mathrm{C}(1,2)$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	3	1
Description:	Sets the number of reactors connected in series at the power unit output.		
Dependency:	Refer to: p0230		
Notice:	The reactor inductances should be the same. If the number of motor reactors connected in series does not correspond to this parameter value, then this can result in an unfavorable control behavior.		
r0238	Internal power unit resistance / PU R internal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the internal resistance of the power unit (IGBT and line resistance).		

p0287[0...1]	Ground fault monitoring thresholds / Gnd flt threshold		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	[0] 6.0 [\%]
			[1] 16.0 [\%]
Description:	Sets the shutdown thresholds for the ground fault monitoring.		
	The setting is made as a percentage of the maximum current of the power unit (r0209).		
Index:	[0] = Threshold at which precharging starts [1] = Threshold at which precharging stops		
Dependency:	Refer to: p 1901		
	Refer to: F30021		
Note:	This parameter is only relevant for chassis power units.		
r0289	CO: Maximum power unit output current / PU I_outp max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the actual maximum output current of the power unit taking into account derating factors.		
p0290	Power unit overload response / PU overld response		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8021
	Min	Max	Factory setting
	0	13	2
Description:	Sets the response to a thermal overload condition of the power unit.		
	The following quantitie - heat sink temperatur - chip temperature (r0 - power unit overload	a response to therm	
	Possible measures to avoid thermal overload:		
	- reduce the output current limit r0289 and r0067 or the output frequency (for U/f control indirectly via the output current limit and the intervention of the current limiting controller).		
	- reduce the pulse frequency.		
	A reduction, if parameterized, is always realized after an appropriate alarm is output.		
Value:	0 : Reduce output current or output frequency		
	1: No reduction shutdown when overload threshold is reached		
	2: Reduce I_output or f_output and f_pulse (not using l2t)		
	3: Reduce the pulse frequency (not using l2t)		
	12: I_output or f_output and automatic pulse frequency reduction		
	13: Automatic pulse frequency reduction		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only responses can be selected without pulse frequency reduction ($\mathbf{p} 0290=0,1$).		
	For a thermal power unit overload, an appropriate alarm or fault is output, and r2135.15 or r2135.13 set.		
	Refer to: r0036, r0037, p0230, r2135		
	Refer to: A05000, A05001, A07805		
Notice:	If the thermal overload of the power unit is not sufficiently reduced by the actions taken, the drive is always shut down. This means that the power unit is always protected irrespective of the setting of this parameter.		

2.2 List of parameters

Note: \quad The setting $\mathrm{p} 0290=0,2$ is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans).
Under overload conditions, if the current and torque limits are reduced, and therefore the motor is braked, then forbidden speed ranges (e.g. minimum speed and suppression [skip] speeds) can also be passed through.
For $p 0290=2,3,12,13$, the $12 t$ overload detection of the power unit does not influence the response "Reduce pulse frequency".
When the motor data identification routine is selected, p0290 cannot be changed.
For short-circuit/ground fault detection, when the test pulse evaluation is active via p1901 "Test pulse evaluation configuration", the pulse frequency at the instant of switch on is briefly reduced.

p0292[0...1]	Power unit temperature alarm threshold / PU T_alrm thresh		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8021
	Min	Max	Factory setting
	$0\left[{ }^{\circ} \mathrm{C}\right]$	$25\left[{ }^{\circ} \mathrm{C}\right]$	[0] $5\left[{ }^{\circ} \mathrm{C}\right]$
			[1] 15 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold for power unit overtemperatures. The value is set as a difference to the tripping (shutdown) temperature.		
	Drive:		
	If this threshold is exceeded, an overload alarm is generated and the system responds as parameterized in p0290. Infeed:		
	When the threshold value is exceeded, only an overload alarm is output.		
Index:	$\begin{aligned} & {[0]=\text { Overtemperature heat sink }} \\ & {[1]=\text { Temperature rise power semiconductor (chip) }} \end{aligned}$		
Dependency:	Refer to: r0037, p0290		
	Refer to: A05000, A05001		
p0295	Fan run-on time / Fan run-on time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [s]	600 [s]	0 [s]
Description:	Sets the fan run-on time after the pulses for the power unit have been canceled.		
Note:	- Under certain circumstances, the fan can continue to run for longer than was set (e.g. as a result of the excessively high heat sink temperature).		
	- For values less than 1 s , a 1 s run on time for the fan is active.		
	- for a PM230 power unit, sizes D-F the parameter is ineffective.		
p0300[0...n]	Motor type selection / Mot type sel		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	0	277	0
Description:	Selecting the motor type.		
	The first digit of the parameter value always defines the general motor type and corresponds to the third-party motor belonging to a motor list:		
	1 = induction motor		
	2 = synchronous motor		
	$\mathrm{xx}=$ motor without code number		
	$x x x=$ motor with code number		

p0306[0...n]	Number of motors connected in parallel / Motor qty		
	Access level: 1	Calculated: -	Data type: Unsigned8
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	50	1
Description:	Sets the number (count) of motors that can be operated in parallel using one motor data set.		
	Depending on the motor number entered, internally an equivalent motor is calculated.		
	The following should be observed in motors connected in parallel:		
	Rating plate data should only be entered for one motor: p0305, p0307		
	The following parameters are also only valid for one motor: p0320, p0341, p0344, p0350 ... p0361		
	All other motor parameters take into account the replacement/equivalent motor (e.g. r0331, r0333).		
Recommendation:	For motors connected in parallel, external thermal protection should be provided for each individual motor.		
Dependency:			
Caution:	The motors to be connected in parallel must be of the same type and size (same order no. (MLFB)).		
	The mounting regulations when connecting motors in parallel must be carefully maintained!		
	The number of motors set must correspond to the number of motors that are actually connected in parallel.		
	After changing p0306, it is imperative that the control parameters are adapted (e.g. using automatic calculation with p0340 = 1, p3900 > 0).		
	For induction motors that are connected in parallel, but which are not mechanically coupled with one another, then the following applies:		
	- an individual motor must not be loaded beyond its stall point.		
Notice:	If p0306 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p 0640 is appropriately preassigned.		
Note:	Only operation with U/f characteristic makes sense if more than 10 identical motors are connected in parallel.		

p0310[0...n]	Rated motor frequency / Mot f_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6301
	Min	Max	Factory setting
	0.00 [Hz]	650.00 [Hz]	$0.00[\mathrm{~Hz}]$
Description:	Sets the rated motor frequency (rating plate).		
Dependency:	The number of pole pairs is automatically re-calculated when the parameter is changed (together with p0311), if $\mathrm{p} 0314=0$.		
	The rated frequency is restricted to values between 1.00 Hz and 650.00 Hz .		
	Refer to: p0311, r0313, p0314		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0310 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. The pre-assignment has been completed if the status display r3996 returns to zero.		
Note:	Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.		

p0311[0...n]	Rated motor speed / Mot n_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the rated motor speed (rating plate).		
	For p0311 = 0, the rated motor slip of induction motors is internally calculated and displayed in r0330.		
	It is especially important to correctly enter the rated motor speed for vector control and slip compensation for U/f control.		
Dependency:	If p0311 is changed and for p0314 $=0$, the pole pair is re-calculated automatically.		
	Refer to: p0310, r0313, p0314		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If $p 0311$ is changed during quick commissioning ($p 0010=1$), the maximum speed $p 1082$, which is also associated with quick commissioning, is pre-assigned accordingly. The pre-assignment has been completed if the status display r3996 returns to zero.		
Note:	Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.		

p0312[0...n]	Rated motor torque / Mot M_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	$1000000.00[\mathrm{Nm}]$	Factory setting
	$0.00[\mathrm{Nm}]$	$0.00[\mathrm{Nm}]$	
Description:	Sets the rated motor torque (rating plate).		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		

r0313[0...n]	Motor pole pair number, actual (or calculated) / Mot PolePairNo act		
	Access level: 3	Calculated:	Data type: Unsigned16

p0314[0...n]	Motor pole pair number / Mot pole pair No.		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	0
Description:	Sets the motor pole pair number. p0314 = 1: 2-pole motor		
Dependency:	For p0314 $=0$, the pole pair number is automatically calculated from the rated frequency (p 0310) and the rated speed (p0311) and displayed in r0313.		
Notice:	If p0314 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly.		
	For induction motors, it is only necessary to enter the value if the rated motor slip is so high that the pole pair number r0313, obtained when making the calculation based on the rated frequency and rated speed, is too low.		

p0316[0...n]	Motor torque constant / Mot kT		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: 28_1	Unit selection: 00100	Func. diagram: -
	Min	Max	Factory setting
	0.00 [Nm / A]	400.00 [Nm / A]	0.00 [Nm / A]
Description:	Sets the torque constant of the synchronous motor. p0316 = 0 :		
	The torque constant is calculated from the motor data.		
	p0316>0:		
	The selected value is used as torque constant.		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter is not used for induction motors ($\mathrm{p} 0300=1 \mathrm{xx}$).		

p0318[0...n]	Motor stall current / Mot I_standstill		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Max selection: -	Func. diagram: -
	Min	10000.00 [Arms]	Factory setting
	$0.00[$ Arms $]$	0.00 [Arms]	
Description:	The parameter has no influence on the closed-loop control.		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		

p0320[0...n]	Motor rated magnetizing current/short-circuit current/ Mot I_mag_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [Arms]	5000.000 [Arms]	0.000 [Arms]
Description:	Induction motors:		
	Sets the rated motor magnetizing current.		
	For p0320 $=0.000$ the magnetizing current is internally calculated and displayed in r0331.		
	Synchronous motors:		
	Sets the rated motor short-circuit current.		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The magnetizing current p032 If, for induction motors, the ma then the magnetizing inductan	duction motors is r ng current p0320 is 60 is changed so th	mmissioning is exited with p3900 >0. he commissioning phase (p0010>0), s constant.

p0322[0...n]	Maximum motor speed / Mot n_max		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum motor speed.		
Dependency:	Refer to: p1082		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0322 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly.		
Note:	The parameter has no sign	a value of p0322	

p0323[0...n]	Maximum motor current / Mot I_max		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [Arms]	20000.00 [Arms]	0.00 [Arms]
Description:	Sets the maximum permissible motor current (e.g. de-magnetizing current for synchronous motors).		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0323 is changed during quick commissioning (p0010 $=1$), then the maximum current p0640 is pre-assigned accordingly.		

Note:	The parameter has no effect for induction motors.
	The parameter has not effect for synchronous motors if a value of 0.0 is entered. The user-selectable current limit is
entered into 00640 .	

p0325[0...n]	Motor pole position identification current 1st phase / Mot PollD I 1st Ph		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [Arms]	10000.000 [Arms]	0.000 [Arms]
Description:	Sets the current for the 1st phase of the two-stage technique for pole position identification routine. The current of the 2nd phase is set in p0329. The two-stage technique is selected with p1980 $=4$.		
Dependency:	Refer to: p0329, p1980		
	Refer to: F07969		
Notice:	When the motor code (p 0301) is changed, it is possible that p0325 is not pre-assigned. p0325 can be pre-assigned using p0340 $=3$.		
Note:	The value is automaticall - For p0325 = 0 and aut - for quick commissionin	ed for the following ation of the closed-l 2, 3).	$(\mathrm{p} 0340=1,2,3) .$

p0329[0...n]	Motor pole position identification current / Mot PollD current		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0000 [Arms]	10000.0000 [Arms]	0.0000 [Arms]
Description:	Sets the current for the pole position identification routine (p1980 = 1).		
	For a two-stage technique ($\mathrm{p} 1980=4$), the current is set for the 2nd phase.		
	The current for the 1st phase is set in 00325.		
Dependency:	If a maximum current (p0323) was not parameterized, then p0329 is limited to the rated motor current.		
	If p0329 is too small in order to determine the pole position (for p1980 $=1$), then p0323 must be first parameterized and significantly greater than p0329.		
	Refer to: p0325, p1980		
	Refer to: F07969		
Notice:	When selecting a catalog mot Information in p0300 should b	1), this parameter is ully observed when	-assigned and is write protected. tection.

r0330[0...n]	Rated motor slip / Mot slip_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$	$-[\mathrm{Hz}]$

Description:	Displays the rated motor slip.
Dependency:	The rated slip is calculated from the rated frequency, rated speed and number of pole pairs.
	Refer to: p0310, p0311, r0313

[^0]
2.2 List of parameters

r0331[0...n]	Actual motor magnetizing current/short-circuit current $/$ Mot l_mag_rtd act Access level: 3	Calculated: -	Data type: FloatingPoint32

r0333[0...n]	Rated motor torque / Mot M_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Unit group: 7_4	Unit selection: p 0100	Func. diagram: -
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the rated motor torque.		
Dependency:	IEC drives (p0100 = 0): unit Nm		
	NEMA drives ($\mathrm{p} 0100=1$): unit lbf ft		
Note:	For induction motors, r0333 is calculated from p0307 and p0311.		
	For synchronous motors, r0333 is calculated from 0305 , $0316, \mathrm{p} 0327$ and p 0328.		

p0335[0...n]	Motor cooling type / Mot cool type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1,3), \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	128	0
Description:	Sets the motor cooling system used.		
Value:	0 : Natural ventilation		
	1: Forced cooling		
	2: Liquid cooling		
	128: No fan		
Dependency: For 1LA7 motors (p0300), the parameter is pre-set as a function of p0307 and p0311.			
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter influences the thermal 3-mass motor model.		
	1LA7 motors, frame size 56 are operated without fan.		

p0340[0...n]	Automatic calculation motor/control parameters / Calc auto par		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	5	0
Description:	Setting to automatically calculate motor parameters and U/f open-loop and closed-loop control parameters from the		
	rating plate data.		
Value:	$0: \quad$ No calculation		
	$1:$	Complete calculation	
	$2:$	Calculation of equivalent circuit diagram parameters	
	$3:$	Calculation of closed-loop control parameters	

p0344[0...n]	Motor weight (for the thermal motor model) / Mot weight th mod		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: 27_1	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	0.0 [kg]	50000.0 [kg]	0.0 [kg]
Description:	Sets the motor weight.		
Dependency:	IEC drives (p0100 = 0): unit kg		
	NEMA drives ($\mathrm{p} 0100=1$): unit lb		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter influences the thermal 3 mass model of the induction motor. The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		

r0345[0...n]	Nominal motor starting time / Mot t_start_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Unit selection: -
	Unit group: -	Max	Func. diagram: -
	Min	$-[s]$	Factory setting
	$-[s]$	$-[s]$	
Description:	Displays the rated motor starting time.		
	This time corresponds to the time from standstill up to reaching the motor rated speed and the acceleration with		
	motor rated torque.		
Dependency:	Refer to: r0313, r0333, p0341, p0342		

p0346[0...n]	Motor excitation build-up time / Mot t_excitation		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the excitation build-up time of the motor.		
	This involves the delay time between enabling the pulses and enabling the ramp-function generator. The induction motor is magnetized during this time.		
Caution: \qquad 1	If there is insufficient magnetization under load or if the acceleration rate is too high, then an induction motor can stall (refer to the note).		
Note:	The parameter is calculated using p $0340=1,3$.		
	For induction motors, the result depends on the rotor time constant (r0384). If this time is excessively reduced, this can result in an inadequate magnetizing of the induction motor. This is the case if the current limit is reached while building up magnetizing. For induction motors, the parameter cannot be set to 0 s (internal limit: 0.1 * r0384).		
	For permanent-magnet synchronous motors and vector control, the value depends on the stator time constant (r0386). Here, it defines the time to establish the current for encoderless operation immediately after the pulses have been enabled.		

p0347[0...n]	Motor de-excitation time / Mot t_de-excitat		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	$20.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$

Description: Sets the de-magnetizing time (for induction motors) after the inverter pulses have been canceled.
The inverter pulses cannot be switched in (enabled) within this delay time.
Note:
The parameter is calculated using $\mathrm{p} 0340=1,3$.
For induction motors, the result depends on the rotor time constant (r0384).
if this time is shortened too much, then this can result in an inadequate de-magnetizing of the induction motor and in
an overcurrent condition when the pulses are subsequently enabled (only when the flying restart function is activated
and the motor is rotating).

p0350[0...n]	Motor stator resistance cold / Mot R_stator cold		
	Access level: 3	Calculated: p0340 = 1,2	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00000 [ohm]	2000.00000 [ohm]	0.00000 [ohm]
Description:	Sets the stator resistance of the motor at ambient temperature p0625 (phase value).		
Dependency:	Refer to: p0625		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The motor identification routi resistance (p0352).	mines the stator resistance	tal stator resistance minus the cable

p0352[0...n]	Cable resistance / R_c		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00000 [ohm]	120.00000 [ohm]	0.00000 [ohm]
Description:	Resistance of the power cable between the power unit and motor.		
Caution:	The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be repeated.		

Note: \quad The parameter influences the temperature adaptation of the stator resistance.
The motor identification sets the cable resistance to 20% of the measured total resistance if p0352 is zero at the time that the measurement is made. If p0352 is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of 10% of the measured value. The cable resistance is reset when quick commissioning is exited with p3900 >0.

p0354[0...n]	Motor rotor resistance cold / Mot R_r cold		
	Calculated: p0340 $=1,2$	Data type: FloatingPoint32	
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS

p0356[0...n]	Motor stator leakage inductance / Mot L_stator leak.		
	Access level: 4	Calculated: p0340 $=1,2$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Induction machine: sets the stator leakage inductance of the motor.		
	Synchronous motor: Sets the stator quadrature axis inductance of the motor.		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p 1910).		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	If the stator leakage inductance (p 0356) for induction motors is changed outside the commissioning phase (p 0010 > 0), the magnetizing inductance (p 0360) is automatically adapted to the new EMF. You are then advised to repeat the measurement for the saturation characteristic (p1960).		
	For permanent-magnet synchronous motors ($\mathrm{p} 0300=2$), this is the non-saturated value and is, therefore, ideal for a low current.		

p0357[0...n]	Motor stator inductance d axis / Mot L_stator d		
	Access level: 4	Calculated: p0340 $=1,2$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.00000[\mathrm{mH}]$	1000.00000 [mH]	0.00000 [mH]
Description:	Sets the stator direct-axis inductance of the synchronous motor.		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p 1910).		

Note: \quad For permanent-magnet synchronous motors $(\mathrm{p} 0300=2)$, this is the non-saturated value and is ideal for a low current.

p0358[0...n]	Motor rotor leakage inductance / Mot L_rot leak		
	Access level: 4	Calculated: p0340 $=1,2$	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6727
	Min	Max	Factory setting
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the rotor/secondary section leakage inductance of the motor.		
	The value is automatically calculated using the motor model ($p 0340=1,2$) or using the motor identification routine (p1910).		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	If the rotor leakage inductance (p 0358) for induction motors is changed outside the commissioning phase (p 0010 > 0), the magnetizing inductance (p 0360) is automatically adapted to the new EMF. You are then advised to repeat the measurement for the saturation characteristic (p1960).		

p0360[0...n]	Motor magnetizing inductance / Mot Lh		
	Access level: 4	Calculated: p0340 $=1,2$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6727
	Min	Max	Factory setting
	0.00000 [mH]	$10000.00000[\mathrm{mH}]$	0.00000 [mH]
Description:	Sets the magnetizing inductance of the motor.		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p 1910).		

Notice:	When selecting a catalog motor $(\mathrm{p} 0301)$, this parameter is automatically pre-assigned and is write protected.
	Information in p0300 should be carefully observed when removing write protection.
Note:	The parameter is not used for synchronous motors $(\mathrm{p} 0300=2)$.

p0363[0...n]	Motor saturation characteristic flux 2 / Mot saturat.flux 2		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	10.0 [\%]	800.0 [\%]	85.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 2 nd value pair of the characteristic.		
	Sets the second flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100\%).		
Dependency:	The following applies for the flux values:		
	p0362 < p0363 < p0364 < p0365		
	Refer to: p0367		
Note:	For induction motors, p0363 $=100 \%$ corresponds to the rated motor flux.		
	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0364[0...n]	Motor saturation characteristic flux 3 / Mot saturat.flux 3		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	10.0 [\%]	800.0 [\%]	115.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 3rd value pair of the characteristic.		
	Sets the third flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100\%).		
Dependency:	The following applies for the flux values:		
	p0362 < p0363 < p0364 < p0365		
	Refer to: p0368		
Note:	For induction motors, p0364 $=100 \%$ corresponds to the rated motor flux.		
	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0365[0...n]	Motor saturation characteristic flux 4 / Mot saturat.flux 4		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	10.0 [\%]	800.0 [\%]	125.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 4th value pair of the characteristic. Sets the fourth flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100 \%).		
Dependency:	The following applies for the flux values:$\text { p0362 < p0363 < p0364 < p } 0365$		
	Refer to: p0369		
Note:	For induction motors, p0365 = 100\% corresponds to the rated motor flux.		
	When quick commissioning is exited with p3900 > 0 , then the parameter is reset if a catalog motor has not been selected (p0300).		

p0366[0...n]	Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	50.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the x coordinate (magnetizing current) for the 1 st value pair of the characteristic. Sets the first magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents:p0366 < p0367 < p0368 < p0369		
	Refer to: p0362		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0367[0...n]	Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	75.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the x coordinate (magnetizing current) for the 2 nd value pair of the characteristic. Sets the second magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents:p0366 < p0367 < p0368 < p0369		
	Refer to: p0363		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0368[0...n]	Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	150.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.		
	This parameter specifies the x coordinate (magnetizing current) for the 3rd value pair of the characteristic.		
	Sets the third magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents:		
	p0366 < p0367 < p0368 < 0369		
	Refer to: p0364		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p 0300).		
p0369[0...n]	Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	210.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.		
	This parameter specifies the x coordinate (magnetizing current) for the 4th value pair of the characteristic.		
	Sets the fourth magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents:p0366 < p0367 < p0368 < p0369		
	Refer to: p0365		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		
r0382[0...n]	Motor magnetizing inductance transformed / Mot L_magn transf		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the magnetizing inductance of the motor.		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0384[0...n]	Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the rotor time constant.		
Note:	The parameter is not used for synchronous motors.		
	The value is calculated from the total of the inductances on the rotor side ($\mathrm{p} 0358, \mathrm{p} 0360$) divided by the rotor resistance (p 0354). The temperature adaptation of the rotor resistance for induction motors is not taken into account.		

r0386[0...n]	Motor stator leakage time constant $/$ Mot T_stator leak		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	$-[\mathrm{ms}]$	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	
Description:	Displays the stator leakage time constant.		
Note:	The value is calculated from the total of all leakage inductances (p0233, p0356, p0358) divided by the total of all		
	motor resistances (p0350, p0352, p0354). The temperature adaptation of the resistances is not taken into account.		

r0394[0...n]	Rated motor power / Mot P_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Unit group: $14 _6$	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	$-[\mathrm{kW}]$	$-[\mathrm{kW}]$	
Description:	Displays the rated motor power.		
Note:	The parameter displays p0307. For p0307 = 0, r0394 is calculated from p0304 and p0305 (only for induction motors).		
	Depending on the actual motor type, deviations can occur from the actual rated motor power.		

r0396[0...n]	Actual rotor resistance / R_rotor act		
	Calculated: -		
	Can be changed: -	Scaling: -	Data type: FloatingPoint32

p0422[0...n]	Absolute encoder linear measuring step resolution / Enc abs meas step		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(4)$	Scaling: -	Dyn. index: EDS
	Unit group: -	Unit selection: -	Func. diagram: 4704
	Min	Max	Factory setting
	0 [nm]	4294967295 [nm]	100 [nm]
Description:	Sets the resolution of the absolute position for a linear absolute encoder.		
Notice:	This parameter is automatically pre-set for encoders from the encoder list (p0400).		
	When selecting a catalog encoder, this parameter cannot be changed (write protection). Information in p0400 should be carefully observed when removing write protection.		
Note:	The serial protocol of an absolute encoder provides the position with a certain resolution, e.g. 100 nm . This value must be entered here.		
p0500	Technology application / Tec application		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1,5)$, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	5	0
Description:	Sets the technology application.		
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 $=5$.		
Value:	0: Standard drive		
	1: Pumps and fans		
	2: Sensorless closed-loop control down to f=0 (pas		
	3: Pumps and fans, efficiency optimization		
	5: Starting with a high break loose torque		
Dependency:	For p0096 = 1, 2 (Standard, Dynamic Drive Control) p0500 cannot be changed.		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 = 2)		
Notice:	If the technological applicatio (p1300) is pre-set accordingly	$\mathrm{op} 0500=0 \ldots 3 \mathrm{du}$	$g(p 0010=1,5,30)$, the
Note:	The calculation of parameters dependent on the technology application can be called up as follows: - when exiting quick commissioning using p3900 > 0 - when writing p0340 $=1,3,5$		
	For $\mathrm{p} 0500=0$ and when the calculation is initiated, the following parameters are set:		
	- p1802 = 0 (automatic changeover SVM/FLB)		
	- p1803 = 106 \%		
	For $\mathrm{p} 0500=1$ and when the calculation is initiated, the following parameters are set:		
	- p1802 = 0 (automatic changeover SVM/FLB)		
	- p1803 = 106 \%		
	For $\mathrm{p} 0500=2$ and when the calculation is initiated, the following parameters are set:		
	- p1802 = 0 (automatic changeover SVM/FLB)		
	- p1803 = 106 \%		
	For $\mathrm{p} 0500 \mathrm{=} 3$ and when the calculation is initiated, the following parameters are set:		
	- p1802 = 0 (automatic changeover SVM/FLB)		
	- p1803 = 106 \%		
	For p1802/p1803:		
	p1802 and p1803 are only changed, in all cases, if a sine-wave output filter ($\mathrm{p} 0230=3,4$) has not been selected.		

p0501	Technological application (Standard Drive Control) / Techn appl SDC		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1,5), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the technology application.		
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 $=5$.		
Value:	0: Constant load (linear characteristic) 1: \quad Speed-dependent load (parabolic characteristic)		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
	Refer to: p1300		
Notice:	If the technological application is set to p0501 $=0,1$ during commissioning ($\mathrm{p} 0010=1,5,30$), the operating mode (p1300) is pre-set accordingly.		
Note:	The calculation of parameters dependent on the technology application can be called up as follows: - when exiting quick commissioning using p3900 > 0 - when writing p0340 $=1,3,5$		
	For p0501 = 0, 1 and when the calculation is initiated, the following parameters are set:		
	$\text { - p1802 = } 0$		
	- p1803 = 106%		
	- p3855.0 = 1 (DC quantity control on)		
	For p1802 / p1803:		
	These parameters are only changed, in all cases, if a sine-wave output filter (p0230 $=3,4$) has not been selected.		
p0502	Technological application (Dynamic Drive Control) / Techn appl DDC		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1,5), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	5	0
Description:	Sets the technology application for dynamic applications (p0096 = 2).		
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 or p3900.		
Value:	0: Standard drive (e.g. pumps, fans)		
	1:5:		
Dependency:	The calculation of parameters dependent on the technology application can be called up as follows:		
	- when exiting quick commissioning using p3900 > 0		
	- when writing p0340 $=1,3$ or 5		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1610, p1750		
Note:	When entering p0502 and initiating the calculation, the following parameters are set: p0502 = 0:		
	- p1750.0/1/7 = 1 (start and reverse in open-loop control with rugged switchover limits)		
	- p1610 $=50 \%$, p1611 $=30 \%$ (low up to average starting torque)		
	p0502 $=1$:		
	- p1750.0/1/7 = 0 (start and reverse in closed-loop speed control with shorter acceleration times)		
	- p1610 $=50 \%$, p1611 $=30 \%$ (only effective, if the drive is switched-on with a speed setpoint of zero)		
	p0502 $=5$:		
	- p1750.0/1/7 = 1 (start and reverse in open-loop control with rugged switchover limits)		
	- p1610 $=80 \%$, p1611 $=80 \%$ (average up to higher starting torque)		
	p1750.6 = 1 is always set, p1574 (voltage reserve) is preassigned, depending on p0205 (power unit application).		

p0505	Selecting the system of units / Unit sys select		
	Access level: 1	Calculated: -	
	Can be changed: C(5)	Scaling: -	Data type: Integer16

2.2 List of parameters

p0515[0...19]	Scaling specific parameters referred to p0514[0] / Scal spec p514[0]		
	Access level: 3	Calculated: p0340 = 1	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:	Sets the parameters with reference value in p0514[0] for the specific scaling.		
	p0515[0]: parameter number		
	p0515[1]: parameter number		
	p0515[2]: parameter number		
	\ldots		
Dependency:	p0515[19]: parameter number		
	Refer to: p0514		

p0516[0...19]	Scaling specific parameters referred to p0514[1] / Scal spec p514[1]		
	Access level: 3	Calculated: p0340 = 1	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:			
	p0516[0]: parameter number		
	p0516[1]: parameter number		
	p0516[2]: parameter number		
	...		
	p0516[19]: parameter number		
Dependency:	Refer to: p0514		

p0517[0...19]	Scaling specific parameters referred to p0514[2] / Scal spec p514[2]		
	Access level: 3	Calculated: p0340 = 1	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:	Sets the parameters with reference value in $\mathrm{p} 0514[2]$ for the specific scaling.		
	p0517[0]: parameter number		
	p0517[1]: parameter number		
	p0517[2]: parameter number		
	...		
	p0517[19]: parameter number		
Dependency:	Refer to: p0514		
p0518[0...19]	Scaling specific parameters referred to p0514[3] / Scal spec p514[3]		
	Access level: 3	Calculated: p0340 = 1	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:	Sets the parameters with reference value in p0514[3] for the specific scaling. p0518[0]: parameter number p0518[1]: parameter number		

Dependency:	p0518[2]: parameter number		
	...		
	p0518[19]: parameter number		
	Refer to: p0514		
p0519[0...19]	Scaling specific parameters referred to p0514[4] / Scal spec p514[4]		
	Access level: 3	Calculated: p0340 = 1	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:	Sets the parameters with reference value in $\mathrm{p} 0514[4]$ for the specific scaling.		
	p0519[0]: parameter number		
	p0519[1]: parameter number		
	p0519[2]: parameter number		
	...		
	p0519[19]: parameter number		
Dependency:	Refer to: p0514		
p0520[0...19]	Scaling specific parameters referred to p0514[5] / Scal spec p514[5]		
	Access level: 3	Calculated: p0340 = 1	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:	Sets the parameters with reference value in $\mathrm{p} 0514[5]$ for the specific scaling.		
	p0520[0]: parameter number		
	p0520[1]: parameter number		
	p0520[2]: parameter number		
	...		
	p0520[19]: parameter number		
Dependency:	Refer to: p0514		
p0521[0...19]	Scaling specific parameters referred to p0514[6] / Scal spec p514[6]		
	Access level: 3	Calculated: p0340 = 1	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:	Sets the parameters with reference value in $\mathrm{p} 0514[6]$ for the specific scaling.		
	p0521[0]: parameter number		
	p0521[1]: parameter number		
	p0521[2]: parameter number		
	...		
	p0521[19]: parameter number		
Dependency:	Refer to: p0514		

2.2 List of parameters

p0522[0...19]	Scaling specific parameters referred to p0514[7] / Scal spec p514[7]		
	Access level: 3	Calculated: p0340 = 1	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:	Sets the parameters with reference value in $\mathrm{p} 0514[7]$ for the specific scaling.		
	p0522[1]: parameter number		
	p0522[2]: parameter number		
	...		
	p0522[19]: parameter number		
Dependency:	Refer to: p0514		
p0523[0...19]	Scaling specific parameters referred to p0514[8] / Scal spec p514[8]		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:	Sets the parameters with reference value in p0514[8] for the specific scaling.		
	p0523[0]: parameter number		
	p0523[1]: parameter number		
	p0523[2]: parameter number		
	...		
	p0523[19]: parameter number		
Dependency:	Refer to: p0514		
p0524[0...19]	Scaling specific parameters referred to p0514[9] / Scal spec p514[9]		
	Access level: 3	Calculated: p0340 = 1	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:	Sets the parameters with reference value in p0514[9] for the specific scaling.		
	p0524[1]: parameter number		
	p0524[2]: parameter number		
	...		
	p0524[19]: parameter number		
Dependen. Refor			
p0530[0...n]	Bearing version selection / Bearing vers sel		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	104	0
Description:	Sets the bearing version.		
	Corresponding to the bearing version entered, its code number (p0531) is automatically set.		
	0 = No data		
	1 = Manual entry		

	101 = STANDARD		
	102 = PERFORMANCE		
	103 = HIGH PERFORMANCE		
	104 = ADVANCED LIFETIME		
Dependency:	Refer to: p0301, p0531, p0532, p1082		
Notice:	For $p 0530=101,102,103,104$, the maximum bearing speed $(p 0532)$ is write protected. Write protection is withdrawn with p0530 $=1$.		
	If p 0530 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$). The maximum speed of the bearing is factored into the limit for the maximum speed p 1082 .		
Note:	For a motor with DRIVE-CLiQ, p0530 can only be set to 1.		
p0531[0...n]	Bearing code number selection / Bearing codeNo sel		
	Access level: 3	Calculated: -	Data type: Unsign
	Can be changed: $\mathrm{C}(3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	65535	0
Description:	Display and setting the code number of the bearing.		
	When setting p0301 and p0530 the code number is automatically pre-assigned and is write protected. The information in p0530 should be observed when removing write protection.		
Dependency:	Refer to: p0301, p0530, p0532, p1082		
Notice:	If $p 0531$ is changed during quick commissioning ($p 0010=1$), then the maximum speed $p 1082$, which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor ($\mathrm{p} 0010=3$). The maximum speed of the bearing is factored into the limit for the maximum speed p1082.		
Note:	p0531 cannot be changed on a motor with DRIVE-CLiQ.		
p0532[0...n]	Bearing maximum speed / Bearing n_max		
	Access level: 3	Calculated: -	Data type: Floating
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum speed of the bearing.		
	The following applies when calculating the maximum speed (p1082):		
	- for p0324 $=0$ or p0532 $=0$, p0322 is used.		
	- for p0324>0 and p0532 > 0, the minimum value from the two parameters is used.		
Dependency:	Refer to: p0301, p0322, p0530, p1082		
Notice:	This parameter is pre-assigned in the case of motors from the motor list ($p 0301$) if a bearing version ($p 0530$) is selected.		
	When selecting a catalog motor, this parameter cannot be changed (write protection). The information in p0530 should be observed when removing write protection.		
	If $p 0532$ is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor (p0010 = 3).		
p0541[0...n]	Load gearbox code number / Load grbx CodeNo		
	Access level: 3	Calculated: -	Data type: Unsign
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:	Display and setting the code number of the load gearbox.		

p0542[0...n]	Load gearbox maximum speed / Load grbx n_max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [rpm]	340.28235 E 36 [rpm]	0 [rpm]
Description:	Maximum permissible input speed at the load gearbox.		
	The following applies when calculating the maximum speed (p1082):		
	- for p0324 $=0$ or p0532 $=0$ or p0542 $=0, \mathrm{p} 0322$ is used.		
	- for p0324>0, p0532 >0 and p0542 >0, the minimum value from the parameters is used.		
p0543[0...n]	Load gearbox maximum torque / Load grbx M_max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Unit group: 7_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0 [Nm]	$340.28235 \mathrm{E} 36[\mathrm{Nm}]$	$0[\mathrm{Nm}]$
Description:	Maximum permissible input torque at the load gearbox.		
p0544[0...n]	Load gearbox overall ratio (absolute value) numerator / Load grbx ratio \mathbf{N}		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2147483647	0
Description:	Sets the numerator for the overall ratio of the load gearbox.		
p0545[0...n]	Load gearbox overall ratio (absolute value) denominator / Load grbx ratio D		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2147483647	0
Description:	Sets the denominator for the overall ratio of the load gearbox.		
p0546[0...n]	Load gearbox output direction of rotation inversion / Load grbx outp inv		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2147483647	0
Description:	Sets the inversion for the direction of rotation of the load gearbox.		
p0550[0...n]	Brake type / Brake type		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the brake version.		

p0551[0...n]	Brake code number / Brake code no.		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	65535	0
Description:	Display and setting the code number of the brake.		
p0552[0...n]	Maximum brake speed / Brake n_max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [rpm]	340.28235 E 36 [rpm]	0 [rpm]
Description:	Sets the maximum brak		
p0553[0...n]	Brake holding torque / Brake M_hold		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Unit group: 7_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0 [Nm]	$340.28235 \mathrm{E} 36[\mathrm{Nm}]$	0 [Nm]
Description:	Sets the brake holding to		
p0554[0...n]	Brake moment of inertia / Brake J		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [kgm^{2}]	2147483647 [kgm^{2}]	$0\left[\mathrm{kgm}^{2}\right]$
Description:	Sets the brake moment		
p0573	Inhibit automatic reference value calculation / Inhibit calc		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Setting to inhibit the calculation of reference parameters (e.g. p2000) when automatically calculating the motor and closed-loop control parameters (p0340, p3900).		
Value:	$\begin{array}{ll} 0: & \text { No } \\ \text { 1: } & \text { Yes } \end{array}$		
Notice:	The inhibit for the reference value calculation is canceled when new motor parameters (e.g. p0305) are entered and only one drive data set exists ($\mathrm{p} 0180=1$). This is the case during initial commissioning.		
	Once the motor and control parameters have been calculated (p0340, p3900), the inhibit for the reference value calculation is automatically re-activated.		
Note:	If value $=0$:		
	The automatic calculation (p0340, p3900) overwrites the reference parameters. If value $=1$:		
	The automatic calculation ($\mathrm{p} 0340, \mathrm{p} 3900$) does not overwrite the reference parameters.		

2.2 List of parameters

p0596	Technological unit reference quantity / Tech unit ref qty		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.01	340.28235E36	1.00
Description:	Sets the reference quantity for the technological units.		
	When changing over using changeover parameter p0595 to absolute units, all of the parameters involved refer to the reference quantity.		
Dependency:	Refer to: p0595		
Notice:	When changing over from one technological unit into another, or when changing the reference parameter, a changeover is not made.		
p0601[0...n]	Motor temperature sensor type / Mot_temp_sens type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 8016
	Min	Max	Factory setting
	0	6	0
Description:	Sets the sensor type for the motor temperature monitoring.		
Value:	0 : No sensor		
	1: PTC alarm \& timer		
	2: KTY84		
	4: Bimetallic NC contact alarm \& timer		
	6: PT1000		
Dependency:	A thermal motor model is calculated corresponding to p0612.		
Caution:	For p0601 = 2, 6:		
¢	If the motor temperature sensor is not connected but another encoder, then the temperature adaptation of the motor resistances must be switched out ($\mathrm{p} 0620=0$). Otherwise, in controlled-loop operation, torque errors will occur that will mean that the motor will not be able to be stopped.		
Note:	For p0601 = 1:		
	Tripping resistance $=1650$ Ohm. Wire breakage and short-circuit monitoring.		
p0604[0...n]	Mot_temp_mod 2/sensor alarm threshold / Mod 2/sens A_thr		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: 21_1	Unit selection: p0505	Func. diagram: 8016
	Min	Max	Factory setting
	0.0 [${ }^{\circ} \mathrm{C}$]	240.0 [${ }^{\circ} \mathrm{C}$]	130.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the alarm threshold for After the alarm threshold is exc If the delay time has expired is output.	g the motor temperature , alarm A07910 is outpu alarm threshold has, in the	mperature model 2 or KTY/PT1000. 0606) is started. not been fallen below, then fault F07011
Dependency:	Refer to: p0606, p0612		
	Refer to: F07011, A07910		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The hysteresis is 2 K .		
	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0605[0...n]	Mot_temp_mod 1/2/sensor threshold and temperature value / Mod1/2/sens T_thr
	Access level: 2 Calculated: - Data type: FloatingPoint32
	Can be changed: C(3), U, T Scaling: - Dyn. index: MDS
	Unit group: 21_1 Unit selection: p0505 Func. diagram: 8016, 8017
	Min Max Factory setting
	0.0 [$\left.{ }^{\circ} \mathrm{C}\right] \quad 240.0$ [$\left.{ }^{\circ} \mathrm{C}\right] \quad 145.0$ [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the threshold and temperature value to monitor the motor temperature.
	Temperature model 1 (12t, p0612.0 = 1):
	The following applies for firmware version <4.7 SP6 or p0612.8 $=0$: - sets the alarm threshold. If the model temperature (r0034) exceeds the alarm threshold, then alarm A07012 is output.
	- this value is simultaneously used as rated winding temperature.
	The following applies from firmware version 4.7 SP6 and p0612.8 = 1:
	- p5390: when commissioning a catalog motor for the first time, p0605 is copied to p5390.
	- p5390: p5390 is of significance when evaluating the alarm threshold.
	- p5390: the stator winding temperature (r0632) is used to initiate the signal.
	- p0627: when a catalog motor is commissioned for the first time, p0605-40 ${ }^{\circ} \mathrm{C}$ is copied to p0627.
	- p0627: p0627 is of significance for the rated temperature.
	Motor temperature model 2 (p0612.1 = 1) or measurement:
	- sets the fault threshold. If the temperature (r0035) exceeds the fault threshold, then fault F07011 is output.
Dependency:	Refer to: r0034, p0606, p0611, p0612
	Refer to: F07011, A07012
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
	Motor temperature model 1 (12t):
	The following applies for firmware version < 4.7 SP6 or p0612.8 = 0
	p0605 also defines the final temperature of the model for r0034 $=100 \%$. Therefore, p0605 has no influence on the time up to alarm A07012 being issued. The time is only determined by time constant p0611, the actual current and the reference value p0318. For p0318 = 0, the rated motor current is used as reference value.
Note:	The hysteresis is 2 K .
	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).

2.2 List of parameters

Dependency:	This parameter is only used for synchronous motors (p0300 = 2xx).				
	Refer to: r0034, p0612, p0615				
	Refer to: F07011, A07012, A07910				
Notice:	This parameter is automatically pre-set from the motor database for motors from the motor list (p0301).				
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.				
	When exiting commissioning, p0612 is checked, and where relevant, is pre-assigned to a value that matches the motor power, if a temperature sensor was not parameterized (see p0601).				
Note:	When parameter p0611 is reset to 0 , then this switches out the thermal 12 t motor model (refer to p0612). If no temperature sensor is parameterized, then the ambient temperature for the thermal motor model is referred to p0625.				
p0612[0...n]	Mot_temp_mod activation / Mot_temp_mod act				
	Access level: 2		p0340 = 1	Data type: Unsigned16	
	Can be changed: U, T			Dyn. index: MDS	
	Unit group: -		n: -	Func. diagram: 8017, 8018	
	Mi	Max		Factory setting	
		-		0000001000000010 bin	
Description:	Setting to activate the motor temperature model.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Activate mot_temp_mod 1 (I2t)	Yes	No	-
		Activate mot_temp_mod 2	Yes	No	-
		Activate mot_temp_mod 3	Yes	No	-
		Activate mot_temp_mod 1 (I2t) extensions	Yes	No	-
		Activate mot_temp_mod 2 extensions	Yes	No	-
	12	Mot_temp_mod 1 (I2t) ambient temperature can be adjusted	Yes (via p0613)	No (fixed $20{ }^{\circ} \mathrm{C}$)	-
Dependency:	For synchronous motors, when exiting commissioning, temperature model 1 is automatically activated if a time constant has been entered in p0611.				
	Refer to: r0034, p0604, p0605, p0606, p0611, p0613, p0615, p0625, p0626, p0627, p0628, r0630, r0631, r0632, r0633, p5350, r5389, p5390, p5391				
	Refer to: F07011, A07012, A07014, A07910				
Notice:	For bit 00:				
	This bit is only automatically activated for permanent-magnet 1FT7 synchronous motors. For other permanentmagnet synchronous motors, the user himself must activate motor temperature model 1 (I2t).				
	It is only possible to activate this motor temperature model (12 t) for a time constant greater than zero (p0611 > 0)				
Note:	Mot_temp_mod: motor temperature model				
	For bit 00:				
	This bit is used to activate/deactivate the motor temperature model for permanent-magnet synchronous motors For bit 01 (see also bit 9):				
	This bit is used to activate/deactivate the motor temperature model for induction motors.				
	For bit 02:				
	This bit is used to activate/deactivate the motor temperature model for 1FK7 Basic and 1FL5 motors.				
	Motor temperature model 3 cannot be simultaneously activated with another motor temperature model.				
	For bit 08:				
	This bit is used to extend the motor temperature model 1 (12t).				
	The following applies for firmware version < 4.7 SP6 (only bit 0):				
	- this bit has no function. Temperature model 1 operates in the standard mode.				
	Overtemperature at rated load: p0605-40 ${ }^{\circ} \mathrm{C}$				
	Alarm threshold: p0605				
	Fault threshold: p0615				
	The following applies from firmware version 4.7 SP6 (bits 0 and 8):				
	- temperature model 1 operates in the extended mode.				
	Overtemperature at rated load: p0627				
	Alarm threshold: p5390				
		threshold: p5391			

For bit 09:
This bit is used to extend the motor temperature model 2.
For firmware version < 4.7 following applies (only bit 1):

- this bit has no function. Temperature model 2 operates in the standard mode.

From firmware version 4.7 the following applies (bits 1 and 9):

- this bit should be set. Temperature model 2 then operates in the extended mode and the result of the model is more precise.
For bit 12 (only effective if a temperature sensor has not been parameterized):
This bit is used to set the ambient temperature for the motor temperature model 1 (I2t).
The following applies for firmware version <4.7 SP6 (only bit 0):
- this bit has no function. Temperature model 1 operates with an ambient temperature of $20^{\circ} \mathrm{C}$.

The following applies from firmware version 4.7 SP6 (bits 0 and 12):

- the ambient temperature can be adapted to the conditions using p0613.

p0613[0...n]	Mot_temp_mod 1/3 ambient temperature / Mod 1/3 amb_temp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: 21_1	Unit selection: p0505	Func. diagram: 8017
	Min	Max	Factory setting
	$-40\left[{ }^{\circ} \mathrm{C}\right]$	$100\left[{ }^{\circ} \mathrm{C}\right]$	$20\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the ambient temperature for motor temperature model 1 or 3 .		
	For firmware version < 4.7 SP6 or p0612.12 $=0$, the following applies:		
	The parameter is not relevant.		
	From firmware version 4.7 SP6 and p0612.12 $=1$, the following applies:		
	The parameter defines the current ambient temperature.		
	- temperature model 3 (p0612.2 = 1):		
	The parameter defines the current ambient temperature.		
Dependency:	Refer to: p0612		
	Refer to: F07011, A07012		

p0614[0...n]	Thermal resistance adaptation reduction factor / Therm R_adapt red		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: MDS

p0615[0...n]	Mot_temp_mod 1 (12t) fault threshold / 12t F thresh		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: 21_1	Unit selection: p0505	Func. diagram: 8017
	Min	Max	Factory setting
	0.0 [${ }^{\circ} \mathrm{C}$]	220.0 [${ }^{\circ} \mathrm{C}$]	180.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the fault threshold for monitoring the motor temperature for motor temperature model 1 (12 t). The following applies for firmware version < 4.7 SP6: - fault F07011 is output after the fault threshold is exceeded. - fault threshold for r0034 = 100 \% * (p0615-40) / (p0605-40).		

2.2 List of parameters

The following applies from firmware version 4.7 SP6 and p0612.8 = 1:

- the fault threshold in p0615 is preset when commissioning.
- when a catalog motor with motor temperature model 1 (I2t) is being commissioned for the first time, the threshold value is copied from p0615 to p5391.
- p5391 is of significance for evaluating the fault threshold.

Dependency: The parameter is only used for motor temperature model 1 (I2t).
Refer to: r0034, p0611, p0612
Refer to: F07011, A07012
Notice: When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
Note: The hysteresis is 2 K .

p0620[0...n]	Thermal adaptation, stator	and rotor resistance $/$ Mot therm_adapt \mathbf{R}	
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: Integer16
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2	1

Description: Sets the thermal adaptation of the stator/primary section resistance and rotor/secondary section resistance according to r0395 and r0396.
Value: $\quad 0: \quad$ No thermal adaptation of stator and rotor resistances
1: Resistances adapted to the temperatures of the thermal model
2: Resistances adapted to the measured stator winding temperature
Note: \quad For p0620 = 1, the following applies:
The stator resistance is adapted using the temperature in r0035 and the rotor resistance together with the model temperature.
For p0620 = 2, the following applies:
The stator resistance is adapted using the temperature in r0035.

r0623	Rs identification stator resistance after switch on again / Rs-id Rs aft sw-on	
	Access level: 4	Calculated: -
	Can be changed: -	Data type: FloatingPoint32

p0626[0...n]	Motor overtemperature, stator core / Mot T_OVer core		
	Access level: 4	Calculated: p0340 $=1,2$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS

p0627[0...n]	Motor overtemperature, stator winding / Mot T_over stator		
	Access level: 2	Calculated: p0340 $=1,2$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: 21_2	Unit selection: p0505	Func. diagram: 8017, 8018
	Min	Max	Factory setting
	15 [K]	200 [K]	$80[\mathrm{~K}]$
Description:	Defines the rated overtemperature of the stator winding referred to the ambient temperature. - motor temperature model 1 (12 t , p0612.0 = 1):		
	The following applies for firmware version <4.7 SP6 or p0612.8 $=0$:		
	The following applies from firmware version 4.7 SP6 and p0612.8 $=1$:		
	Overtemperature at the rated operating point.		
	- motor temperature model 2 (p0612.1 = 1):		
	Overtemperature at the rated operating point.		

r0633[0...n]	Mot_temp_mod rotor temperature / Mod rotor temp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: MDS
	Unit group: 21_1	Unit selection: p0505	Func. diagram: 8018
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the rotor temperature of the motor temperature model (models 2 and 3$).$		
Note:	For motor temperature model $1($ p0612.0 $=1)$, this parameter is not valid:		

p0637[0...n]	Q flux flux gradient saturated / PSIQ Grad SAT		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.00[\mathrm{mH}]$	$10000.00[\mathrm{mH}]$	$0.00[\mathrm{mH}]$
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients.		
	This parameter describes the gradients of the saturated component over the quadrature axis current.		

p0640[0...n]	Current limit / Current limit		
	Access level: 2	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: C(1, 3), U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6640
	Min	Max	Factory setting
	$0.00[$ Arms $]$	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the current limit.		

Dependency:	Refer to: r0209, p0323
Note:	The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when

 The parameter is part of the quick commissioning (\(\mathrm{p} 0010=1\)), this means that it is appropriately pre-assigned when
 changing p0305. The current limit p0640 is limited to r0209.
 The resulting current limit is displayed in r0067 and if required, r0067 is reduced by the thermal model of the power
 unit.
 The torque and power limits (p 1520 , \(\mathrm{p} 1521, \mathrm{p} 1530\), p 1531) matching the current limit are automatically calculated
 when exiting the quick commissioning using p3900>0 or using the automatic parameterization with p0340=3,5.
 p0640 is limited to \(4.0 \times p 0305\).
 p0640 is pre-assigned for the automatic self commissioning routine (e.g. to \(1.5 \times \mathrm{p} 0305\), with p0305 = r0207[1]).
 p0640 must be entered when commissioning the system. This is the reason that p0640 is not calculated by the
 automatic parameterization when exiting the quick commissioning (p3900>0).
 | p0650[0...n] | Actual motor operating hours / Oper hours motor | | |
| :---: | :---: | :---: | :---: |
| | Access level: 3 | Calculated: - | Data type: Unsigned32 |
| | Can be changed: T | Scaling: - | Dyn. index: MDS |
| | Unit group: - | Unit selection: - | Func. diagram: - |
| | Min | Max | Factory setting |
| | 0 [h] | 4294967295 [h] | 0 [h] |
| Description: | Displays the operating hours for the corresponding motor. | | |
| | The motor operating time counter continues to run when the pulses are enabled. When the pulse enable is withdrawn, the counter is held and the value saved. | | |
| Dependency: | Refer to: p0651 | | |
| | Refer to: A01590 | | |
| Note: | For p0651 $=0$, the operating hours counter is disabled. | | |
| | The operating hours counter in p0650 can only be reset to 0 . | | |
| | The operating hours counter only runs with drive data set 0 and 1 (DDS). | | |

p0651[0...n]	Motor operating hours maintenance interval / Mot t_op maint			
	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: T	Scaling: -	Dyn. index: MDS	
	Unit group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	0 [h]	150000 [h]	0 [h]	
Description:	Sets the service/maintenance intervals in hours for the appropriate motor.			
	An appropriate message is output when the operating hours set here are reached.			
Dependency:	Refer to: p0650			
	Refer to: A01590			
Note:	For p0651 = 0, the operating hours counter is disabled.			
	When setting p0651 to 0 , then p0650 is automatically set to 0 .			
	The operating hours counter only runs with drive data set 0 and 1 (DDS).			
	If there is no temperature monitor, then interconnect to a fixed value.			
	For index 3:			
	When the binector input is interconnected, precharging is switched-on independent of the magnitude of the precharging threshold.			
r0720[0...4]	CU number of inputs and outputs / CU I/O count			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagram: 2119	
	Min	Max	Factory setting	
			-	
Description:	Displays the number of inputs and outputs.			
Index:	[0] = Number of digital inputs			
	[1] = Number of digital outputs			
	[2] = Number of digital input/outputs bidirectional			
	$[3]=$ Number of analog inputs			
	[4] = Number of analog outputs			
r0722.0... 11	CO/BO: CU digital inputs status / CU DI status			
	Access level: 2	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagram: 2201, 2221, 2255, 2810	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the status of the digital inputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (T. 5)	High	Low	-
	01 DI 1 (T. 6)	High	Low	-
	02 DI 2 (T. 7)	High	Low	-
	03 DI 3 (T. 8)	High	Low	-
	04 DI 4 (T. 16)	High	Low	-
	05 DI 5 (T. 17)	High	Low	-
	11 DI 11 (T. 3, 4) AI 0	High	Low	-
Dependency:	Refer to: r0723			
Note:	AI: Analog Input			
	DI: Digital Input			
	T: Terminal			

2.2 List of parameters

r0723.0... 11	CO/BO: CU digital inputs status inverted / CU DI status inv			
	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagram: 2201, 2221, 2255	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the inverted status of the digital inputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DI 0 (T. 5)	High	Low	-
	01 DI 1 (T. 6)	High	Low	-
	02 DI 2 (T. 7)	High	Low	-
	03 DI 3 (T. 8)	High	Low	-
	04 DI 4 (T. 16)	High	Low	-
	05 DI 5 (T. 17)	High	Low	-
	11 DI 11 (T. 3, 4) AI 0	High	Low	-
Dependency:	Refer to: r0722			
Note:	Al: Analog Input			
	DI: Digital Input			
	T: Terminal			
p0724	CU digital inputs debounce time / CU DI t_debounce			
	Access level: 3	Calculated: -	Data type: Flo	
	Can be changed: U, T	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagra	
	Min	Max	Factory setti	
	0.000 [ms]	20.000 [ms]	4.000 [ms]	
Description:	Sets the debounce time for digital inputs.			
Note:	The digital inputs are read in cyclically every 2 ms (DI 11, DI 12 every 4 ms).			
	To debounce the signals, the set debounce time is converted into integer multiple debounce clock cycles $\mathrm{Tp}(\mathrm{Tp}=$ p0724/2 ms).			
	DI: Digital Input			

p0730

Description:
Recommendation:
Sets the signal source for terminal DO 0 (NO: T. 19 / NC: T. 18). r0052.0 Ready for switching on
r0052.1 Ready for operation
r0052.2 Operation enabled
r0052.3 Fault present
r0052.4 Coast down active (OFF2)
r0052.5 Quick stop active (OFF3)
r0052.6 Switching-on inhibited active
r0052.7 Alarm present
r0052.9 Control request
r0052.14 Motor rotates forwards
r0053.0 DC braking active
r0053.1 n_act > p2167 (n_off)
r0053.2 n_act <= p1080 (n_min)
r0053.3 I_act > p2170
r0053.4 n_act > p2155

	r0053.5 n_act <= p2155
	r0053.6 n_act >= n_set
	r0053.10 Technology controller output at the lower limit
r0053.11 Technology controller output at the upper limit	
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
	DO: Digital Output
	T: Terminal
	Relay output: NO = normally open, NC = normally closed

p0731	BI: CU signal source for terminal DO 1 / CU S_src DO 1		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2119, 2030, 2130
	Min	Max	Factory setting
	-	-	52.7
Description:	Sets the signal source for terminal DO 1 (NO: T. 21).		
Recommendation:	r0052.0 Ready for switching on		
	r0052.1 Ready for operation		
	r0052.2 Operation enabled		
	r0052.3 Fault present		
	r0052.4 Coast down active (OFF2)		
	r0052.5 Quick stop active (OFF3)		
	r0052.6 Switching-on inhibited active		
	r0052.7 Alarm present		
	r0052.9 Control request		
	r0052.14 Motor rotates forwards		
	r0053.0 DC braking active		
	r0053.1 n_act > p2167 (n_off)		
	r0053.2 n_act <= p1080 (n_min)		
	r0053.3 I_act > p2170		
	r0053.4 n_act > p2155		
	r0053.5 n_act <= p2155		
	r0053.6 n_act >= n_set		
	r0053.10 Technology controller output at the lower limit		
	r0053.11 Technology controller output at the upper limit		
	The parameter may be p	result of p0922 or	be changed.
Note:	DO: Digital Output		
	T: Terminal		
	Relay output: NO = normally open, NC = normally closed		

r0747	CU digital outputs status / CU DO status		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2130, 2131, 2132, 2133
	Min	Max	Factory setting
	-	-	
Description:	Displays the status of digital outputs.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	$00 \text { DO } 0 \text { (NO: T. } 19 \text { / NC: T. 18) }$	High	Low
	01 DO 1 (NO: T. 21)	High	Low -

2.2 List of parameters

Note:	DO: Digital Output
	T: Terminal
	Relay output: NO = normally open, NC = normally closed
	Inversion using p0748 has been taken into account.

p0748	CU invert digital outputs / CU DO inv		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2201, 2202, 2240, 2242
	Min	Max	Factory setting
	-	-	0000 bin
Description:	Setting to invert the signals at the digital outputs.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 DO 0 (NO: T. 19 / NC: T. 18)	Inverted	Not inverted
	01 DO 1 (NO: T. 21)	Inverted	Not inverted
Note:	DO: Digital Output		
	T: Terminal		
	Relay output: NO = normally open, NC = normally closed		

r0751.0... 9	BO: CU analog inputs status word / CU Al status word					
	Access level: 3		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Unit group: -		Unit selection: -		Func. diagram: 2250, 2251	
	Min		Max		Factory setting	
	-		-		-	
Description:	Display and binector output for the status of the analog inputs.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Analog input		Yes	No	-
	01	Analog input		Yes	No	-
	08	Analog input		Yes	No	-
		Analog input		Yes	No	-
Note:	AI:	alog Input				

r0752[0...1]	CO: CU analog inputs input voltage/current actual / CU AI U/I_inp act		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p0514	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual input voltage in V when set as voltage input.		
	Displays the actual input current in mA when set as current input and with the load resistor switched in.		
Index:	$[0]=\mathrm{AlO}(\mathrm{~T} .3 / 4)$		
Dependency:	The type of analog input Alx (voltage or current input) is set using p0756.		
	Refer to: p0756		
Note:	AI: Analog Input		
	T: Terminal		

p0753[0...1]	CU analog inputs smoothing time constant / CU AI T_smooth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description:	Sets the smoothing time constant of the 1st order lowpass filter for the analog inputs.$[0]=\mathrm{AlO}(\mathrm{~T} .3 / 4)$		
Index:			
	[1] = Al1 (T. 10/11)		
Note:	Al: Analog Input		
	T: Terminal		
r0755[0...1]	CO: CU analog inputs actual value in percent / CU AI value in \%		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the currently referred input value of the analog inputs.		
	When interconnected, the signals are referred to the reference quantities p200x and p205x.		
Index:	$\begin{aligned} & {[0]=\operatorname{AIO}(\mathrm{T} .3 / 4)} \\ & {[1]=\mathrm{Al1}(\mathrm{~T} .10 / 11)} \end{aligned}$		
Note:	AI: Analog Input		
	T: Terminal		
p0756[0...1]	CU analog inputs type / CU Al type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	0	8	[0] 4
			[1] 4
Description:	Sets the type of analog inputs.		
	p0756[0...1] $=0,1,4$ corresponds to a voltage input (r0752, p0757, p0759 are displayed in V).		
	p0756[0...1] = 2, 3 corresponds to a current input (r0752, p0757, p0759 are displayed in mA).		
	In addition, the associated DIP switch must be set.		
	For the voltage input, DIP switch AIO/1 must be set to "U".		
	For the current input, DIP switch AIO/1 or Al2 must be set to "I".		
Value:	0 : Unipolar voltage input ($0 \vee \ldots+10 \mathrm{~V}$)		
	1: Unipolar voltage input monitored (+2 V ... +10 V)		
	2: Unipolar current input ($0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$)		
	3: Unipolar current input monitored (+4 mA to +20 mA)		
	4: \quad Bipolar voltage input ($-10 \mathrm{~V} \ldots+10 \mathrm{~V}$)		
	8: No sensor connected		
Index:	$[0]=$ AIO (T. 3/4)		
	[1] = Al1 (T. 10/11)		
Warning:	The maximum voltage difference between analog input terminals Al+, Al-, and the ground must not exceed 35 V .		
	If the system is operated when the load resistor is switched on (DIP switch set to "I"), the voltage between differential inputs Al+ and AI- must not exceed 10 V or the injected 80 mA current otherwise the input will be damaged.		
Note:	When changing p0756, the parameters of the scaling characteristic ($\mathrm{p} 0757, \mathrm{p} 0758, \mathrm{p} 0759, \mathrm{p} 0760$) are overwritten with the following default values:		
	For p0756 $=0,4$, p 0757 is set to $0.0 \mathrm{~V}, \mathrm{p} 0758=0.0 \%$, p $0759=10.0 \mathrm{~V}$ and p $0760=100.0 \%$.		
	For p0756 $=1$, p 0757 is set to $2.0 \mathrm{~V}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=10.0 \mathrm{~V}$ and p0760 $=100.0 \%$.		

$$
\begin{aligned}
& \text { For p0756 }=2, \mathrm{p} 0757 \text { is set to } 0.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=20.0 \mathrm{~mA} \text { and } \mathrm{p} 0760=100.0 \% . \\
& \text { For } \mathrm{p} 0756=3, \mathrm{p} 0757 \text { is set to } 4.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=20.0 \mathrm{~mA} \text { and } \mathrm{p} 0760=100.0 \% .
\end{aligned}
$$

p0757[0...1]	CU analog inputs characteristic value $\times 1 / \mathrm{CU}$ Al char $\times 1$		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-50.000	160.000	0.000
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the x coordinate (V, mA) of the 1st value pair of the characteristic.		
Index:	$[0]=$ AlO (T. 3/4)$[1]=$ Al1 (T. 10/11)		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0758[0...1]	CU analog inputs characteristic value y1 / CU Al char y1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the y coordinate (percentage) of the 1 st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\operatorname{AlO}(\mathrm{T} .3 / 4)} \\ & {[1]=\operatorname{Al1}(\mathrm{T} .10 / 11)} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0759[0...1]	CU analog inputs characteristic value x2 / CU Al char x2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-50.000	160.000	10.000
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the x coordinate (V, mA) of the 2 nd value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\operatorname{AlO}(\mathrm{T} .3 / 4)} \\ & {[1]=\operatorname{Al1}(\mathrm{T} .10 / 11)} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0760[0...1]	CU analog inputs characteristic value y2 / CU AI char y2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the y coordinate (percentage) of the 2 nd value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\operatorname{AIO}(\mathrm{T} .3 / 4)} \\ & {[1]=\operatorname{Al1}(\mathrm{T} .10 / 11)} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		

p0771[0...1]	CI: CU analog outputs signal source / CU AO S_src		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2261
	Min	Max	Factory setting
	-	-	[0] 21[0]
			[1] 27[0]
Description:	Sets the signal source for the analog outputs.		
Index:	$[0]=A O O(T 12 / 13)$$[1]=$ AO1 (T 26/27)		
Note:	AO: Analog Output		
	T: Terminal		
r0772[0...1]	CU analog outputs output value currently referred / CU AO outp act ref		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual referred output value of the analog outputs.		
Index:	$\begin{aligned} & {[0]=A O 0(T 12 / 13)} \\ & {[1]=A O 1(T 26 / 27)} \end{aligned}$		
Note:	AO: Analog Output		
	T: Terminal		
p0773[0...1]	CU analog outputs smoothing time constant / CU AO T_smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description: Index:	Sets the smoothing time constant of the 1st order lowpass filter for the analog outputs.		
	$\begin{aligned} & {[0]=A O 0(T 12 / 13)} \\ & {[1]=A O 1(T 26 / 27)} \end{aligned}$		
Note:	AO: Analog Output		
	T: Terminal		
r0774[0...1]	CU analog outputs output voltage/current actual / CU AO U/I_outp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual output voltage or output current at the analog outputs.		
Index:	$\begin{aligned} & {[0]=A O 0(T 12 / 13)} \\ & {[1]=A O 1(T 26 / 27)} \end{aligned}$		
Dependency:	Refer to: p0776		
Note:	AO: Analog Output		
	T: Terminal		

p0775[0...1]	CU analog outputs activate absolute value generation / CU AO absVal act		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	0	1	0
Description:	Activates the absolute value generation for the analog outputs.		
Value:	0 : \quad No absolute value generation 1: Absolute value generation switched in		
Index:	$\begin{aligned} & {[0]=A O O(T 12 / 13)} \\ & {[1]=A O 1(T \mathrm{~T} 26 / 27)} \end{aligned}$		
Note:	AO: Analog Output		
	T: Terminal		

p0776[0...1]	CU analog outputs type / CU AO type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	0	2	0
Description:	Sets the analog output type.		
	$\mathrm{p} 0776[\mathrm{x}]=1$ corresponds to a voltage output ($\mathrm{p} 0774, \mathrm{p} 0778$, p 0780 are displayed in V).		
	$\mathrm{p} 0776[\mathrm{x}]=0,2$ corresponds to a current output (p0774, p0778, p0780 are displayed in mA).		
Value:	0: Current output ($0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$)		
	1: Voltage output ($0 \mathrm{~V} \ldots \ldots+10 \mathrm{~V}$)		
	2: \quad Current output ($+4 \mathrm{~mA} \ldots+20 \mathrm{~mA}$)		
Index:	[0] = AOO (T 12/13)		
	[1] = AO1 (T 26/27)		
Note:	When changing p0776, the parameters of the scaling characteristic (p0777, p0778, p0779, p0780) are overwritten with the following default values:		
	For p0776 $=0, \mathrm{p} 0777$ is set to $0.0 \%, \mathrm{p} 0778=0.0 \mathrm{~mA}, \mathrm{p} 0779=100.0 \%$ and p0780 to 20.0 mA .		
	For p0776 $=1, \mathrm{p} 0777$ is set to $0.0 \%, \mathrm{p} 0778=0.0 \mathrm{~V}, \mathrm{p} 0779=100.0 \%$ and p0780 to 10.0 V .		
	For p0776 $=2$, p0777 is set to 0.0%, p0778 $=4.0 \mathrm{~mA}, \mathrm{p} 0779=100.0 \%$ and p0780 to 20.0 mA .		

p0777[0...1]	CU analog outputs characteristic value x1 / CU AO char x1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
Index:	$[0]=A O O(T 12 / 13)$ [1] = AO1 (T 26/27)		
Dependency:	Refer to: p0776		
Notice:	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		
Note:			

2.2 List of parameters

p0778[0...1]	CU analog outputs characteristic value y1 / CU AO char y1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-20.000 [V]	20.000 [V]	0.000 [V]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the y coordinate (output voltage in V or output current in mA) of the 1st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=A O O(T 12 / 13)} \\ & {[1]=A O 1(T 26 / 27)} \end{aligned}$		
Dependency:	The unit of this parameter (V or mA) depends on the analog output type.		
Notice:	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0779[0...1]	CU analog outputs characteristic value x2 / CU AO char x2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
Index:	This parameter specifies the x coordinate (percentage) of the 2 nd value pair of the characteristic.		$\begin{aligned} & {[0]=A O 0(T 12 / 13)} \\ & {[1]=A O 1(T \quad 26 / 27)} \end{aligned}$
Dependency:	Refer to: p0776		
Notice:	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0780[0...1]	CU analog outputs characteristic value y2 / CU AO char y2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-20.000 [V]	20.000 [V]	20.000 [V]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the y coordinate (output voltage in V or output current in mA) of the 2 nd value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=A O 0(T 12 / 13)} \\ & {[1]=A O 1(T 26 / 27)} \end{aligned}$		
Dependency:	The unit of this parameter (V or mA) depends on the analog output type.		
Notice:	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		

p0782[0...1]	BI: CU analog outputs invert signal source / CU AO inv S_src		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to invert the analog output signals.		
Index:	[0] = AOO (T 12/13)		
Note:	AO: Analog Output		
	T: Terminal		
r0785.0... 1	BO: CU analog outputs status word / CU AO ZSW		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status of analog outputs.		
Bit field:	$\begin{array}{ll}\text { Bit } & \text { Signal name } \\ 00 & \text { AO } 0 \text { negative } \\ 01 & \text { AO } 1 \text { negative }\end{array}$	1 signal	0 signal FP
		Yes	No
		Yes	No
Note:	AO: Analog Output		
p0791[0...1]	CO: Fieldbus analog outputs / Fieldbus AO		
G120C_USS	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-200.000 [\%]	200.000 [\%]	0.000 [\%]
Description: Index:	Setting and connector output to control the analog outputs via fieldbus.		
	$\begin{aligned} & {[0]=A O 0(T 12 / 13)} \\ & {[1]=A O 1(T \quad 26 / 27)} \end{aligned}$		
Dependency: Note:	Refer to: p0771		
	AO: Analog Output		
	The following interconnections must be established to control the analog outputs via fieldbus:		
	- AO 0: p0771[0] with p0791[0]		
	- AO 1: p0771[1] with p0791[1]		
p0795	CU digital inputs simulation mode / CU Dl simulation		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2201, 2202, 2220, 2221, 2255, 2256
	Min	Max	Factory setting
	-	-	0000000000000000 bin
Description:	Sets the simulation mode for digital inputs.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 DI 0 (T. 5)	Simulation	Terminal eval
	01 DI 1 (T. 6)	Simulation	Terminal eval -
	02 DI 2 (T. 7)	Simulation	Terminal eval -
	03 DI 3 (T. 8)	Simulation	Terminal eval

2.2 List of parameters

		DI 4 (T. 16)	Simulation	Terminal eval
		DI 5 (T. 17)	Simulation	Terminal eval
		DI 11 (T. 3, 4) AI 0	Simulation	Terminal eval
	12	DI 12 (T. 10, 11) Al 1	Simulation	Terminal eval
Dependency:	The setpoint for the input signals is specified using p0796.			
	Refer to: p0796			
Note:	This parameter is not saved when data is backed up (p0971).			
	DI: Digital Input			
	T: Terminal			

p0796	CU digital inputs simulation mode setpoint / CU DI simul setp		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2201, 2202, 2220, 2221, 2255, 2256
	Min	Max	Factory setting
	-	-	0000000000000000 bin
Description:	Sets the setpoint for the input signals in the digital input simulation mode.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 DI 0 (T. 5)	High	Low
	01 DI 1 (T. 6)	High	Low
	02 DI 2 (T. 7)	High	Low
	03 DI 3 (T. 8)	High	Low
	04 DI 4 (T. 16)	High	Low
	05 DI 5 (T. 17)	High	Low
	$11 \text { DI } 11 \text { (T. 3, 4) AI } 0$	High	Low
	12 DI 12 (T. 10, 11) Al 1	High	Low
Dependency:	The simulation of a digital input is selected using p0795. Refer to: p0795		
Note:	This parameter is not saved when data is backed up (p0971).		
	Al: Analog Input		
	DI: Digital Input		
	T: Terminal		

p0797[0...1]	CU analog inputs simulation mode / CU Al sim_mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the simulation mode for the analog inputs.		
Value:	0 : \quad Terminal evaluation for analog input x 1: Simulation for analog input x		
Index:	$\begin{aligned} & {[0]=\operatorname{AIO}(\mathrm{T} .3 / 4)} \\ & {[1]=\operatorname{Al1}(\mathrm{T} .10 / 11)} \end{aligned}$		
Dependency:	The setpoint for the input voltage is specified via p0798.		
Note:	This parameter is not saved when data is backed up (p0971). AI: Analog Input		

p0798[0...1]	CU analog inputs simulation mode setpoint / CU Al sim setp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-50.000	2000.000	0.000
Description: Index:	Sets the setpoint for the input value in the simulation mode of the analog inputs.$\begin{aligned} & {[0]=\text { AlO }(\mathrm{T} .3 / 4)} \\ & {[1]=\text { Al1 }(\mathrm{T} .10 / 11)} \end{aligned}$		
Dependency:	The simulation of an analog input is selected using p0797. If $\mathrm{Al} x$ is parameterized as a voltage input (p 0756), the setpoint is a voltage in V . If $\mathrm{Al} x$ is parameterized as a current input (p 0756), the setpoint is a current in mA . Refer to: p0756, p0797		
Note:	This parameter is not saved when data is backed up (p0971). AI: Analog Input		
p0802	Data transfer: memory card as source/target / mem_card src/targ		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	100	0
Description:	Sets the number for data transfer of a parameter backup from/to memory card. Transfer from memory card to device memory ($p 0804=1$): - sets the source of parameter backup (e.g. p0802 = 48 --> PS048xxx.ACX is the source). Transfer from non-volatile device memory to memory card (p0804 = 2): - sets the target of parameter backup (e.g. p0802 = 23 --> PS023xxx.ACX is the target).		
Dependency:	Refer to: p0803, p0804		
Note:	The volatile device memory is not influenced by data transfer.		
p0803	Data transfer: device memory as source/target / Dev_mem src/targ		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	30	0
Description:	Sets the number for data transfer of a parameter backup from/to the non-volatile device memory. Transfer from memory card to device memory (p0804 = 1): - sets the target of the parameter backup (e.g. p0803 = 10 --> PS010xxx.ACX is the target). Transfer from non-volatile device memory to memory card (p0804 = 2): - sets the source of the parameter backup (e.g. p0803 = 11 --> PS011xxx.ACX is the source).		
Value:	$0:$ Source/target sta 10: Source/target with 11: Source/target with 12: Source/target with 30: Source/target with		
Dependency:	Refer to: p0802, p0804		
Note:	The volatile device memory is not influenced by data transfer.		

p0804	Data transfer start / Data transf start
G120C_DP	Access level: 3 Calculated: - Data type: Integer16
G120C_PN	Can be changed: T Scaling: - Dyn. index: -
	Unit group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	011000
Description:	Sets the transfer direction and start of data transfer between the memory card and non-volatile device memory. Example 1: The parameter backup is to be transferred from the non-volatile device memory to the memory card with setting 0 . The parameter backup is to be stored on the memory card with setting 22.
	p0802 $=22$ (parameter backup stored on memory card as target with setting 22)
	p0803 $=0$ (parameter backup stored in device memory as source with setting 0)
	p0804 = 2 (start data transfer from device memory to memory card)
	--> PS000xxx.ACX is transferred from device memory to memory card and stored as PS022xxx.ACX.
	--> the parameter backup PS022xxx.ACX on the memory card can be used for data backup.
	Example 2:
	The parameter backup is to be transferred from the memory card to the non-volatile device memory with setting 22. The parameter backup is to be stored in the device memory as setting 10.
	p0802 $=22$ (parameter backup stored on memory card as source with setting 22)
	p0803 = 10 (define parameter backup with setting 10 as target in the device memory)
	p0804 = 1 (start data transfer from memory card to device memory)
	--> PS022xxx.ACX is transferred from memory card to device memory and stored as PS010xxx.ACX.
	--> this parameter backup can be loaded to the volatile device memory using p0010=30 and p0970 = 10 .
	--> to permanently save in the device memory and also on the memory card, this parameter backup should be saved using p0971 = 1 .
	Example 3 (only supported for PROFIBUS/PROFINET):
	The PROFIBUS or PROFINET device master data (GSD) should be transferred from the device memory to the memory card.
	p0802 = (not relevant)
	p0803 = (not relevant)
	p0804 = 12 (start transferring the GSD files to the memory card)
	--> The GSD files are transferred from the device memory to the memory card and stored in the /SIEMENS/SINAMICS/DATA/CFG directory.
Value:	0 : Inactive
	1: Memory card to device memory
	2: Device memory to memory card
	12: Device memory (GSD files) to memory card
	1001: File on memory card cannot be opened
	1002: File in device memory cannot be opened
	1003: Memory card not found
	1100: File cannot be transferred
Recommendation:	When switching off/switching on, a possibly valid parameter backup is loaded to the memory card with setting 0 . Therefore, we do not recommend parameter backup with setting $0(p 0803=0)$ in the non-volatile device memory.
Dependency:	Refer to: p0802, p0803
Notice:	The memory card must not be removed while data is being transferred.
Note:	If a parameter backup with setting 0 is detected on the memory card when the Control Unit is switched on (PS000xxx.ACX), this is transferred automatically to the device memory.
	When the memory card is inserted, a parameter backup with setting 0 (PS000xxx.ACX) is automatically written to the memory card when the parameters are saved in a non-volatile memory (e.g. by means of "Copy RAM to ROM").
	Once the data has been successfully transferred, this parameter is automatically reset to 0 . If an error occurs, the parameter is set to a value > 1000. Possible fault causes: p0804 = 1001: The parameter backup set in p0802 as the source on the memory card does not exist or there is not sufficient memory space available on the memory card.

p0804 = 1002:
The parameter backup set in p0803 as the source in the device memory does not exist or there is not sufficient memory space available in the device memory.
p0804 = 1003:
No memory card has been inserted.

Recommendation: When switching off/switching on, a possibly valid parameter backup is loaded to the memory card with setting 0 .

p0804
G120C_USS
G120C_CAN
Description:

Value:

Dependency:
Notice:
Note:

Data transfer start / Data transf start		
Access level: 3	Calculated: -	Data type: Integer16
Can be changed: T	Scaling: -	Dyn. index: -
Unit group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
0	1100	0

Sets the transfer direction and start of data transfer between the memory card and non-volatile device memory. Example 1:
The parameter backup is to be transferred from the non-volatile device memory to the memory card with setting 0 . The parameter backup is to be stored on the memory card with setting 22.
p0802 $=22$ (parameter backup stored on memory card as target with setting 22)
p0803 $=0$ (parameter backup stored in device memory as source with setting 0)
p0804 = 2 (start data transfer from device memory to memory card)
--> PS000xxx.ACX is transferred from device memory to memory card and stored as PS022xxx.ACX.
--> the parameter backup PS022xxx.ACX on the memory card can be used for data backup.
Example 2:
The parameter backup is to be transferred from the memory card to the non-volatile device memory with setting 22. The parameter backup is to be stored in the device memory as setting 10.
p0802 $=22$ (parameter backup stored on memory card as source with setting 22)
p0803 = 10 (define parameter backup with setting 10 as target in the device memory)
p0804 = 1 (start data transfer from memory card to device memory)
--> PS022xxx.ACX is transferred from memory card to device memory and stored as PS010xxx.ACX.
--> this parameter backup can be loaded to the volatile device memory using p0010=30 and p0970=10.
--> to permanently save in the device memory and also on the memory card, this parameter backup should be saved using p0971 = 1 .
Example 3 (only supported for PROFIBUS/PROFINET):
The PROFIBUS or PROFINET device master data (GSD) should be transferred from the device memory to the memory card.
p0802 $=($ not relevant $)$
p0803 $=$ (not relevant)
p0804 $=12$ (start transferring the GSD files to the memory card)
--> The GSD files are transferred from the device memory to the memory card and stored in the /SIEMENS/SINAMICS/DATA/CFG directory.
0 : Inactive
1: Memory card to device memory
2: Device memory to memory card
1001: File on memory card cannot be opened
1002: File in device memory cannot be opened
1003: Memory card not found
1100: File cannot be transferred Therefore, we do not recommend parameter backup with setting 0 ($0803=0$) in the non-volatile device memory.
Refer to: p0802, p0803
The memory card must not be removed while data is being transferred.
If a parameter backup with setting 0 is detected on the memory card when the Control Unit is switched on (PS000xxx.ACX), this is transferred automatically to the device memory.
When the memory card is inserted, a parameter backup with setting 0 (PS000xxx.ACX) is automatically written to the memory card when the parameters are saved in a non-volatile memory (e.g. by means of "Copy RAM to ROM").

2.2 List of parameters

Once the data has been successfully transferred, this parameter is automatically reset to 0 . If an error occurs, the parameter is set to a value >1000. Possible fault causes:
p0804 = 1001:
The parameter backup set in p0802 as the source on the memory card does not exist or there is not sufficient memory space available on the memory card.
p0804 = 1002:
The parameter backup set in p0803 as the source in the device memory does not exist or there is not sufficient memory space available in the device memory.
p0804 = 1003:
No memory card has been inserted.

p0809[0...2]	Copy Command Data Set CDS / Copy CDS		
	Access level: 2	Calculated: -	Data type: Unsigned8
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8560
	Min	3	Factory setting
	0	0	
Description:	Copies one Command Data Set (CDS) into another.		
Index:	$[0]=$ Source Command Data Set		
	$[1]=$ Target Command Data Set		
	$[2]=$ Start copying procedure		
Dependency:	Refer to: r3996		
Notice:	When the command data sets are copied, short-term communication interruptions may occur.		

Note:	Procedure:
1. In Index 0, enter which command data set should be copied.	
2. In index 1, enter the command data set that is to be copied into.	
3. Start copying: set index 2 from 0 to 1.	
p0809[2] is automatically set to 0 when copying is completed.	

p0810	BI: Command data set selection CDS bit 0 / CDS select., bit 0		
G120C_DP	Access level: 2	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8560
	Min	Max	Factory setting
	-	-	722.3
Description:	Sets the signal source to select the Command Data Set bit 0 (CDS bit 0).		
Dependency:	Refer to: r0050, r0836		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective command data set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		

p0810	BI: Command data set selection CDS bit 0 / CDS select., bit 0		
G120C_USS	Access level: 2	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8560
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Command Data Set bit 0 (CDS bit 0).		
Dependency:	Refer to: r0050, r0836		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective command data set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		

p0819[0...2]	Copy Drive Data Set DDS / Copy DDS		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: $\mathrm{C}(15)$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8565
	Min	Max	Factory setting
	0	1	0
Description:	Copies one Drive Data Set (DDS) into another.		
Index:	[0] = Source Drive Data Set [1] = Target Drive Data Set [2] = Start copying procedure		
Dependency:	Refer to: r3996		
Notice:	When the drive data sets are copied, short-term communication interruptions may occur.		
Note:	Procedure:		
	1. In Index 0 , enter which drive data set is to be copied.		
	2. In index 1, enter the drive data set data that is to be copied into.		
	3. Start copying: set index 2 from 0 to 1 .		
	p0819[2] is automatically set to 0 when copying is completed.		

p0820[0...n]	BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: C(15), T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 8565
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 0 (DDS, bit 0).		
Dependency:			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0826[0...n]	Motor changeover motor number / Mot_chng mot No.		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	If the same motor is driven by different drive data sets, the same motor number must also be entered in these data sets.		
	If the motor is also switched with the drive data set, different motor numbers must be used. In this case, the data set can only be switched when the pulse inhibit is set.		
Note:	If the motor numbers are identical, the same thermal motor model is used for calculation after data set changeover. If different motor numbers are used, different models are also used for calculating (the inactive motor cools down in each case).		

r0835.2... 8	CO/BO: Data set changeover status word / DDS_ZSW				
		ss level: 2 Calc		Data type: U	
		be changed: - Scal		Dyn. index: -	
		group: - Unit	n: -	Func. diagra	
	Min	Max		Factory sett	
	-	-		F	
Description:	Displays the status word for the drive data set changeover.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Internal parameter calculation active	Yes	No	
		Armature short circuit active	Yes	No	-
		Identification running	Yes	No	-
		Friction characteristic plot running	Yes	No	-
		Rotating measurement running	Yes	No	-
	08	Motor data identification running	Yes	No	-
Note:	For bit 02:				
	A data set changeover is delayed by the time required for the internal parameter calculation.				
	For bit 04:				
	A data set changeover is only carried out when the armature short circuit is not activated.				
	For bit 05:				
	A data set changeover is only carried out when pole position identification is not running.				
	A data set changeover is only carried out when rotating measurement is not running.				
	For bit 08:				
	A data set changeover is only carried out when motor data identification is not running.				

r0836.0...1	CO/BO: Command Data Set CDS selected / CDS selected		
	Access level: 3	Calculated: -	Data type: Unsigned8

2.2 List of parameters

p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501, 8720, 8820, 8920
	Min	Max	Factory setting
	-	-	1
Description:	Sets the first signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).		
	BI: p0844 $=0$ signal or BI: p0845 $=0$ signal		
	- OFF2 (immediate pulse suppression and switching-on inhibited)		
	BI : p0844 = 1 signal and BI: p0845 = 1 signal		
	- no OFF2 (enable is possible)		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0845[0...n]	BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501, 8720, 8820, 8920
	Min	Max	Factory setting
	-	-	1
Description:	Sets the second signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).		
	$\mathrm{BI}: \mathrm{p} 0844=0$ signal or $\mathrm{BI}: \mathrm{p} 0845=0$ signal		
	- OFF2 (immediate pulse suppression and switching-on inhibited)		
	BI: p0844 = 1 signal and BI: p0845 = 1 signal		
	- no OFF2 (enable is possible)		
Caution:	When "master control from PC " is activated, this binector input is effective.		
p0848[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	[0] 2090.2
			[1] 1
Description:	Sets the first signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		

2.2 List of parameters

BI: p0848 = 0 signal or BI: p0849 $=0$ signal

- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switching-on inhibited)

BI: p0848 = 1 signal and BI: p0849 = 1 signal

- no OFF3 (enable is possible)

Caution: When "master control from PC" is activated, this binector input is ineffective.

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: For drives with closed-loop torque control (activated using p1501), the following applies:
BI: p0848 = 0 signal:

- no dedicated braking response, but pulse suppression when standstill is detected ($\mathrm{p} 1226, \mathrm{p} 1227$).

p0848[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	1
Description:	Sets the first signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	BI: p0848 = 0 signal or BI : $\mathrm{p} 0849=0$ signal		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switching-on inhibited)		
	$\mathrm{BI}: \mathrm{p} 0848=1$ signal and BI : p0849 = 1 signal		
	- no OFF3 (enable is possible)		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For drives with closed-loop torque control (activated using p1501), the following applies:		
	BI: p0848 = 0 signal:		
	- no dedicated braking response, but pulse suppression when standstill is detected ($\mathrm{p} 1226, \mathrm{p} 1227$).		
p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
		-	1
Description:	Sets the second signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	BI : p0848 $=0$ signal or BI : p0849 $=0$ signal		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switching-on inhibited)		
	$\mathrm{BI}: \mathrm{p} 0848=1$ signal and BI: p0849 = 1 signal		
	- no OFF3 (enable is possible)		
Caution:	When "master contro	ivated, this binector	

Note: For drives with closed-loop torque control (activated using p1501), the following applies: BI: p0849 = 0 signal:

- no dedicated braking response, but pulse suppression when standstill is detected ($\mathrm{p} 1226, \mathrm{p} 1227$).

p0852[0...n]	BI: Enable operation/inhibit operation / Enable operation		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	[0] 2090.3
			[1] 1
Description:	Sets the signal source for the command "enable operation/inhibit operation".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).		
	BI: p0852 $=0$ signal		
	Inhibit operation (suppress pulses).		
	BI: p0852 = 1 signal		
	Enable operation (pulses can be enabled).		
Caution: \leqq	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0852[0...n]	BI: Enable operation/inhibit operation / Enable operation		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable operation/inhibit operation".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).		
	BI: p0852 $=0$ signal		
	Inhibit operation (suppress pulses).		
	BI: $00852=1$ signal		
	Enable operation (pulses can be enabled).		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
$\boxed{1}$			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0854[0...n]	BI: Control by PLC/no control by PLC / Master ctrl by PLC		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
			[0] 2090.10
			[1] 1
Description:	Sets the signal source for the command "control by PLC/no control by PLC".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).		
	BI: p0854 $=0$ signal		
	No control by PLC		
	BI: p0854 = 1 signal		
	Master control by PLC.		
Caution: $\$$	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

2.2 List of parameters

Note: \quad This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1 .
If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration (p0922 = 999).

p0855[0...n]	BI: Unconditionally release holding brake / Uncond open brake		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501, 2701
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source for the command "unconditionally open holding brake".		
Dependency:	Refer to: p0858		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The signal via BI: p0858 (unconditionally close holding brake) has a higher priority than via BI: p0855 (unconditionally		
	open holding brake).		

p0856[0...n]	BI: Enable speed controller / n_ctrl enable		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501, 2701
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable speed controller" (r0898.12). 0 signal: Set the I component and speed controller output to zero. 1 signal: Enable speed controller.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1) Refer to: r0898		
Note:	If "enable speed controller" is withdrawn, then an existing brake will be closed. If "enable speed controller" is withdrawn, the pulses are not suppressed.		

p0857	Power unit monitoring time / PU t_monit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8760, 8864, 8964
	Min	Max	Factory setting
	100.0 [ms]	60000.0 [ms]	10000.0 [ms]
Description:	Sets the monitoring time for the power unit.		
	The monitoring time is started after an $0 / 1$ edge of the ON/OFF1 command. If the power unit does not return a READY signal within the monitoring time, fault F07802 is output.		
Dependency:	Refer to: F07802, F30027		
Notice:	The maximum time to precharge the DC link is monitored in the power unit and cannot be changed. The maximum precharging duration depends on the power unit.		
	The monitoring time for the precharging is started after the ON command (BI: p0840 $=0 / 1$ signal). Fault F 30027 is output when the maximum precharging duration is exceeded.		
Note:	The factory setting for p0857 depends on the power unit.		
	The monitoring time for the ready signal of the power unit includes the time to precharge the DC link and, if relevant, the de-bounce time of the contactors.		
	If an excessively low value is entered into p0857, then after enable, this results in the corresponding fault.		
p0858[0...n]	BI: Unconditionally close holding brake / Uncond close brake		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501, 2701
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the command "unconditionally close holding brake".		
Dependency:	Refer to: p0855		
Note:	The signal via BI: p0858 (unconditionally close holding brake) has a higher priority than via BI: p0855 (unconditionally open holding brake).		
	For a 1 signal via BI : p 0858 , the command "unconditionally close the holding brake" is executed and internally a zero setpoint is entered.		
p0860	BI: Line contactor feedback signal / Line contact feedb		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2634
	Min	Max	Factory setting
			863.1
Description:	Sets the signal source for the feedback signal from the line contactor.		
Recommendation:	When the monitoring is activated (BI: p0860 not equal to r0863.1), then to control the line contactor, signal BO: r0863.1 of its own drive object should be used.		
Dependency:	Refer to: p0861, r0863		
Notice:	The line contactor monitoring is deactivated if the control signal of the particular drive object is set as the signal source for the feedback signal of the line contactor (BI: p0860 = r0863.1).		
Note:	The state of the line contactor is monitored depending on signal BO: r0863.1.		
	When the monitoring is activated (BI: p0860 not equal to r0863.1), fault F07300 is then also output if the contactor is closed before it is controlled using r0863.1.		

p0861	Line contactor monitoring time / LineContact t_mon			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: T	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagram: 2634	
	Min	Max	Factory setting	
	0 [ms]	5000 [ms]	100 [ms]	
Description:	Sets the monitoring time of the line contactor.			
	This time starts each time that the line contactor switches (r0863.1). If a feedback signal is not received from the line contactor within the time, a message is output.			
Dependency:	Refer to: p0860, r0863			
Note:	The monitoring function is disabled for the factory setting of p0860.			
r0863.0... 1	CO/BO: Drive coupling status word/control word / CoupleZSW/STW			
	Access level: 3	Calculated: -	Data type: U	
	Can be changed: -	Scaling: -	Dyn. index:	
	Unit group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory sett	
	-	-	-	
Description:	Display and BICO output for the status word and control word of the drive coupling.			
Bit field:	Bit Signal name 00 Closed-loop control operation 01 Energize contactor	1 signal Yes Yes	0 signal No No	$\begin{aligned} & \text { FP } \\ & - \\ & 2634 \end{aligned}$
Note:	For bit 01:			
	Bit 1 is used to control an external line contactor.			
p0867	Power unit main contactor holding time after OFF1 / PU t_MC after OFF1			
	Access level: 3	Calculated: -	Data type: F	
	Can be changed: T	Scaling: -	Dyn. index:	
	Unit group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory sett	
	0.0 [ms]	500.0 [ms]	50.0 [ms]	
Description:	Sets the main contactor holding time after OFF1			
Dependency:	Refer to: p0869			
Note:	After withdrawing the OFF1 enable (source of p0840), the main contactor is opened after the main contactor holding time has elapsed.			
	For p0869 $=1$ (keep main contactor closed for STO), after withdrawing STO, the switching on inhibited must be acknowledged via the source of $00840=0$ (OFF1) - and before the main contactor holding time expires, should go back to 1 , otherwise the main contactor will open.			
	When operating a drive connected to SINUMERIK, which only closes the main contactor with the OFF1 command (blocksize, chassis), p0867 should be set as a minimum to 50 ms .			

p0869	Sequence control configuration / Seq_ctrl config		
	Access level: 3	Calculated: -	Data type: Unsigned16

Note:	For bit 00:				
	After withdrawing the OFF1 enable (source of p0840), the main contactor is opened after the main contactor holding time has elapsed.				
	For p0869.0 = 1, after withdrawing STO, the switching on inhibited must be acknowledged via the source of p0840= 0 (OFF1) - and before the main contactor holding time expires (p 0867), should go back to 1 , otherwise the main contactor will open.				
p0870	BI: Close main contactor / Close main cont				
	Acc	ss level: $2 \quad$ Ca		Data type: U	
	Can	be changed: T Sc		Dyn. index:	
		group: - Un	n: -	Func. diagr	
	Min	Max		Factory sett	
	-	-		0	
Description:	Sets the signal source to close the main contactor.				
Note:	The main contactor is also closed when the converter is switched on after issuing the necessary enable signals. A binector input p0870 $=1$ signal prevents the main contactor from being opened when enable signals are withdrawn.				
r0898.0... 14	CO/BO: Control word sequence control / STW seq_ctrl				
	Acc	ss level: $2 \quad$ Ca		Data type:	
		be changed: - S		Dyn. index:	
	Uni	group: - U	n: -	Func. diagr	
	Min	Max		Factory sett	
	-	-		-	
Description:	Display and connector output for the control word of the sequence control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	-
	01	OC / OFF2	Yes	No	-
	02	OC / OFF3	Yes	No	-
	03	Enable operation	Yes	No	-
	04	Enable ramp-function generator	Yes	No	-
	05	Continue ramp-function generator	Yes	No	-
	06	Enable speed setpoint	Yes	No	-
	07	Command open brake	Yes	No	-
	08	Jog 1	Yes	No	3001
	09	Jog 2	Yes	No	3001
	10	Master control by PLC	Yes	No	-
	12	Speed controller enable	Yes	No	-
	14	Command close brake	Yes	No	-

Note:	OC: Operating condition				
r0899.0... 13	CO/BO: Status word sequence control / ZSW seq_ctrl				
		ss level: 2	Calculated: -	Data type: Unsigned16	
		e changed: -	Scaling: -	Dyn. index: -	
		group: -	Unit selection: -	Func. diagram: 2503	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and BICO output for the status word of the sequence control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Ready for switching on	Yes	No	-
	01	Ready	Yes	No	-
	02	Operation enabled	Yes	No	-
	03	Jog active	Yes	No	-
	04	No coasting active	OFF2 inactive	OFF2 active	-
	05	No Quick Stop active	OFF3 inactive	OFF3 active	-
	06	Switching-on inhibited active	Yes	No	-
	07	Drive ready	Yes	No	-

2.2 List of parameters

p0922	PROFIdrive PZD telegram selection / PZD telegr_sel		
G120C_DP	Access level: 1	Calculated: -	Data type: Unsigned16
G120C_PN	Can be changed: $\mathrm{C}(1), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2401, 2420
	Min	Max	Factory setting
	1	999	1
Description:	Sets the send and receive telegram.		
Value:	1: Standard telegram 1, PZD-2/2		
	20: Standard telegram 20, PZD-2/6		
	350: SIEMENS telegram 350, PZD-4/4		
	352: SIEMENS telegram 352, PZD-6/6		
	353: SIEMENS telegram 353, PZD-2/2, PKW-4/4		
	354: SIEMENS telegram 354, PZD-6/6, PKW-4/4		
	999: Free telegram configuration with BICO		
Dependency:	Refer to: p2038		
	Refer to: F01505		
Note:	For p0922 $=100 \ldots 199$, p2038 is automatically set to 1 and p2038 can no longer be changed. This means that for these telegrams, the "SIMODRIVE 611 universal" interface mode is set and cannot be changed.		
	If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited.		

[^1]

2.2 List of parameters

r0948[0...63]	Fault time received in milliseconds / t_fault recv ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 8050, 8060
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0949, r2109, r2130, r2133, r2136		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		

r0949[0...63]	Fault value / Fault value		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8050, 8060
	Min	Max	Factory setting
	-	-	-
Description:	Displays additional information about the fault that occurred (as integer number).		
Dependency:	Refer to: r0945, r0947, r0948, r2109, r2130, r2133, r2136, r3120, r3122		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in 22139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
p0952	Fault cases counter / Fault cases qty		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6700, 8060
	Min	Max	Factory setting
	0	65535	0
Description:	Number of fault situations that have occurred since the last reset.		
Dependency:	The fault buffer is deleted (cleared) by setting p0952 to 0 .		
	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136		
r0963	PROFIBUS baud rate / PB baud rate		
G120C_DP	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	-
Description:	Displays the corresponding value for the PROFIBUS baud rate.		
Value:	0: $\quad 9.6 \mathrm{kbit} / \mathrm{s}$		
	1: $\quad 19.2 \mathrm{kbit} / \mathrm{s}$		
	2: $\quad 93.75 \mathrm{kbit} / \mathrm{s}$		
	3: $\quad 187.5 \mathrm{kbit} / \mathrm{s}$		
	4: $\quad 500 \mathrm{kbit/} / \mathrm{s}$		
	6: $\quad 1.5 \mathrm{Mbit} / \mathrm{s}$		
	7: $3 \mathrm{Mbit} / \mathrm{s}$		
	8: $6 \mathrm{Mbit} / \mathrm{s}$		
	9: $12 \mathrm{Mbit} / \mathrm{s}$		
	10: $\quad 31.25 \mathrm{kbit} / \mathrm{s}$		
	$\begin{array}{ll}\text { 11: } & 45.45 \mathrm{kbit/s} \\ \text { 255: } & \text { Unknown }\end{array}$		

r0964[0...6]	Device identification / Device ident		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the device identification.		
Index:	[0] = Company (Siemens = 42)		
	[1] = Device type		
	[2] = Firmware version		
	[3] = Firmware date (year)		
	[4] = Firmware date (day/month)		
	[5] = Number of drive objects		
	[6] = Firmware patch/hot fix		
Note:	Example:		
	r0964[0] = 42 --> SIEMENS		
	r0964[1] = device type, see below		
	r0964[2] = 403 --> first part of the firmware version V04.03 (for second part, refer to index 6)		
	r0964[3] = 2010 --> year 2010		
	r0964[4] = 1705 --> 17th of May		
	r0964[5] = 2 --> 2 drive objects		
	r0964[6] = 200 --> second part, firmware version (complete version: V04.03.02.00)		
	Device type:		
	r0964[1] = 6510 --> SINAMICS G120C_DP		
	r0964[1] = 6511 --> SINAMICS G120C_PN		
	r0964[1] = 6512 --> SINAMICS G120C_CAN		
	r0964[1] = 6513 --> SINAMICS G120C_USS/MB		
r0965	PROFIdrive profile number / PD profile number		
G120C_DP	Access level: 3	Calculated: -	Data type: Unsigned16
G120C_PN	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFIdrive profile number and profile version.		
	Constant value $=0329$ hex.		
	Byte 1: Profile number $=03$ hex $=$ PROFIdrive profile		
	Byte 2: Profile version = 29 hex = Version 4.1		
Note:	When the parameter is read via PROFIdrive, the Octet String 2 data type applies.		
p0969	System runtime relative / t_System relative		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8050, 8060
	Min	Max	Factory setting
	0 [ms]	4294967295 [ms]	0 [ms]
Description:	Displays the system runtime in ms since the last POWER ON.		
Note:	The value in p0969 can only be reset to 0 .		
	The value overflows after approx. 49 days.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		

p0970	Reset drive parameters / Drive par reset		
	Access level: 1	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(1,30)$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	300	0
Description:	The parameter is used to initiate the reset of the drive parameters.		
	Parameters p0100, p0205 are not reset.		
	The following motor parameters are defined in accordance with the power unit: p0300 ... p0311.		
Value:	0 : Inactive		
	1: Start a parameter reset		
	3: Start download of volatile parameters from RAM		
	5: Starts a safety parameter reset		
	10: Start loading the parameters saved with p0971=10		
	11: Start loading the parameters saved with p0971=11		
	12: Start loading the parameters saved with p0971=12		
	30: Start loading the delivery state saved with p0971=30		
	100: Start a BICO interconnection rese		
	300: Only Siemens internal		
Dependency: Notice:	Refer to: F01659		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
	Peculiarities of communication via PROFIBUS DP:		
	- communication with Class 1 masters (e.g. S7 controllers) is interrupted.		
	- Communication with Class 2 masters (e.g. STARTER) is retained.		
Note:	A factory setting run can only be started if p0010 was first set to 30 (parameter reset).		
	At the end of the calculations, p0970 is automatically set to 0 .		
	Parameter reset is completed with $\mathrm{p} 0970=0$ and $\mathrm{r} 3996[0]=0$.		
	For p0970 = 1 the following applies:		
	If a Safety Integrated function is parameterized (p9601), then the safety parameters are not reset. In this case, an error message (F01659) is output with fault value 2.		
	The following generally applies:		
	One index of parameters p2100, p2101, p2126, p2127 is not reset, if a parameterized message is precisely active in this index.		
p0971	Save parameters / Save par		
	Access level: 1	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	30	0
Description:	Setting to save parameters in the non-volatile memory.		
	When saving, only the adjustable parameters intended to be saved are taken into account.		
Value:	0 : Inactive		
	1: Save drive object		
	10: Save in non-volatile memory as setting 10		
	11: Save in non-volatile memory as setting 11		
	12: Save in non-volatile memory as setting 12		
	30: State when delivered, save in non-volatile memory as setting 30		
Dependency:	Refer to: p0970, p1960, p3845, r3996		
Caution:	If a memory card (optional) is inserted - and the USB interface is not used, the following applies:		
	The parameters are also saved on the card and therefore overwrite any existing data!		

Notice:	The Control Unit power supply may only be switched off after data has been saved (i.e. after data save has been started, wait until the parameter again has the value 0).
	Writing to parameters is inhibited while saving.
	The progress while saving is displayed in r3996.
	For p0971 = 30:
	The original state when delivered is overwritten when executing this memory function.
Note:	Parameters saved with p0971 = 10, 11, 12 can be loaded again with p0970 = 10, 11 or 12.
	Identification and maintenance data (I\&M data, p8806 and following) are only saved for p0971 = 1.
p0972	Drive unit reset / Drv_unit reset
	Access level: 3 Calculated: - Data type: Unsigned16
	Can be changed: U, T Scaling: - Dyn. index: -
	Unit group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	0 3 0
Description:	Sets the required procedure to execute a hardware reset for the drive unit.
Value:	0: Inactive
	1: Hardware-Reset immediate
	2: Hardware reset preparation
	3: Hardware reset after cyclic communication has failed
Danger:	It must be absolutely ensured that the system is in a safe condition.
	The memory card/device memory of the Control Unit must not be accessed.
Note:	If value = 1:
	Reset is immediately executed and communications interrupted.
	After communications have been established, check the reset operation (refer below).
	If value = 2:
	Help to check the reset operation.
	Firstly, set p0972 $=2$ and then read back. Secondly, set p0972 $=1$ (it is possible that this request is possibly no longer acknowledged). The communication is then interrupted.
	After communications have been established, check the reset operation (refer below).
	If value = 3:
	The reset is executed after interrupting cyclic communication. This setting is used to implement a synchronized reset by a control for several drive units.
	If cyclic communication is not active, then the reset is immediately executed.
	After communications have been established, check the reset operation (refer below).
	To check the reset operation:
	After the drive unit has been restarted and communications have been established, read p0972 and check the following:
	p0972 = 0? --> the reset was successfully executed.
	p0972 = 0? --> the reset was not executed.

r0980[0...299]	List of existing parameters 1 / List avail par 1		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0981, r0989		
Note:	Modified parameters are displayed in indices 0 to 298. If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0981[0...299]	List of existing parameters 2 / List avail par 2		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0980, r0989		
Note:	Modified parameters are displayed in indices 0 to 298. If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0989[0...299]	List of existing parameters 10 / List avail par 10		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0980, r0981		
Note:	Modified parameters are displayed in indices 0 to 298 . If an index contains the value 0 , then the list ends here. This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0990[0...99]	List of modified parameters 1 / List chang par 1		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:	Refer to: r0991, r0999		
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0990[0...99], r0991[0...99] ... r0999[0...99]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0991[0...99]	List of modified parameters $2 /$ List chang par 2		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
Description:	-	-	-
Dependency:	Displays those parameters with a value other than the factory setting for this drive.		
	Refer to: r0990, r0999		

Note: \quad Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.
This list consists solely of the following parameters:
r0990[0...99], r0991[0...99] ... r0999[0...99]
The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).

2.2 List of parameters

Notice:
The parameter is possibly protected as a result of p0922.
For PROFIBUS/PROFINET Control Units, the following applies: The parameter can be freely set by setting p0922 $=$
999.
When executing a specific macro, the corresponding programmed settings are made and become active.

p1001[0...n]	CO: Fixed speed setpoint 1 / n_set_fixed 1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 1.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1002[0...n]	CO: Fixed speed setpoint 2 / n_set_fixed 2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 2.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1003[0...n]	CO: Fixed speed setpoint 3 / n_set_fixed 3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 3.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 4.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1005[0...n]	CO: Fixed speed setpoint 5 / n_set_fixed 5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 5.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		

Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1006[0...n]	CO: Fixed speed setpoint 6 / n_set_fixed 6		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 6.		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1007[0...n]	CO: Fixed speed setpoint 7 / n_set_fixed 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 7.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1008[0...n]	CO: Fixed speed setpoint 8 / n_set_fixed 8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 8.		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1009[0...n]	CO: Fixed speed setpoint 9 / n_set_fixed 9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 9.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1010[0...n]	CO: Fixed speed setpoint 10 / n_set_fixed 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 10.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1011[0...n]	CO: Fixed speed setpoint 11 / n_set_fixed 11		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 11.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 12.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1013[0...n]	CO: Fixed speed setpoint 13 / n_set_fixed 13		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 13.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1014[0...n]	CO: Fixed speed setpoint 14 / n_set_fixed 14		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 14.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1015[0...n]	CO: Fixed speed setpoint 15 / n_set_fixed 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 15.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1016	Fixed speed setpoint select mode / n_set_fix select		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 3010, 3011
	Min	Max	Factory setting
	1	2	1
Description:	Sets the mode to select the fixed speed setpoint.		
Value:	$\begin{array}{ll} \text { 1: } & \text { Direct } \\ \text { 2: } & \text { Binary } \end{array}$		
Note:	For p1016 = 1:		
	In this mode, the setpoint is entered via the fixed speed setpoints p1001 ... p1004.		
	Up to 16 different setpoints are obtained by adding the individual fixed speed setpoints.		
	For p1016 = 2:		
	In this mode, the setpoint is entered via the fixed speed setpoints p1001 ... p1015.		
p1020[0...n]	BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2505, 3010, 3011
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Sets the values for the fixed speed setpoints $1 . . .15$ using p1001 ... p1015.		
	Refer to: p1021, p1022, p1023		
Note:	If a fixed speed setpoint has not been selected (p1020 ... p1023 = 0), then r1024 $=0$ ((etpoint $=0$).		
p1021[0...n]	BI: Fixed speed setpoint selection Bit 1 / n_set_fixed Bit 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2505, 3010, 3011
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Sets the values for the fixed speed setpoints $1 . . .15$ using p1001 ... p1015.Refer to: p1020, p1022, p1023		
Note:	If a fixed speed setpoint has not been selected (p1020 \ldots p1023 = 0), then r1024 $=0$ (setpoint $=0$).		
p1022[0...n]	BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2505, 3010, 3011
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Sets the values for the fixed speed setpoints $1 \ldots 15$ using p1001 ... p1015.		
	Refer to: p1020, p1021, p1023		
Note:	If a fixed speed setpoint has not been selected ($\mathrm{p} 1020 \ldots \mathrm{p} 1023=0$), then r1024 $=0($ setpoint $=0)$.		

p1023[0...n]	BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2505, 3010, 3011
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1021, p1022		
Note:	If a fixed speed setpoint has not been selected (p1020 ... p1023 = 0), then r1024 $=0$ ((etpoint $=0$).		
r1024	CO: Fixed speed setpoint effective / Speed fixed setp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3001, 3010, 3011
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the selected and active fixed speed setpoint.		
	This setpoint is the output value for the fixed speed setpoints and must be appropriately interconnected (e.g. with the main setpoint).		
Recommendation:	Interconnect the signal with the main setpoint (CI: $\mathrm{p} 1070=\mathrm{r} 1024$).		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Sets the values for the fixed speed setpoints $1 . . .15$ using p1001 ... p1015.		
	Refer to: p1070		
Note:	If a fixed speed setpoint has not been selected (p1020 \ldots p1023 = 0), then r1024 $=0$ ((setpoint $=0$).		
r1025.0	BO: Fixed speed setpoint status / n_setp_fix status		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Display and binector output for the status when selecting the fixed speed setpoints.		
Bit field:	Bit Signal name 00 Fixed speed setpoint selected	1 signal Yes	$\mathbf{0}$ signal FP No 3011
Dependency:	Refer to: p1016		
Note:	For bit 00:		
	When the fixed speed setpoints are directly selected ($\mathrm{p} 1016=1$), this bit is set if at least 1 fixed speed setpoint is selected.		

p1030[0...n]	Motorized potentiometer configuration / Mop configuration					
	Acc	ss level: 3	Calculate		Data type: Un	
	Can	be changed: U, T	Scaling: -		Dyn. index: D	
	Unit	group: -	Unit selec	n: -	Func. diagram	
	Min		Max		Factory settin	
	-		-		00000110 bin	
Description:	Sets the configuration for the motorized potentiometer.					
Bit field:		Signal name		1 signal	0 signal	FP
		Data save active		Yes	No	-
		Automatic mode active	generator	Yes	No	-
		Initial rounding-of		Yes	No	-
		Save in NVRAM		Yes	No	-
		Ramp-function g	s active	Yes	No	-
Notice:	The following prerequisites must be fulfilled in order to be able to save the setpoint (Bit $03=1$) in a non-volatile fashion:					
	- Firmware with V2.3 or higher.					
	- Control Unit 320 (CU320) with hardware version C or higher (module with NVRAM).					
Note:	For bit 00:					
	0 : The setpoint for the motorized potentiometer is not saved and after ON is entered using p1040.					
	1: The setpoint for the motorized potentiometer is saved after OFF and after ON set to the saved value. In order save in a non-volatile fashion, bit 03 should be set to 1 .					
	For bit 01:					
	0 : Without ramp-function generator in the automatic mode (ramp-up/ramp-down time $=0$). 1: With ramp-function generator in the automatic mode.					
	For manual operation, the ramp-function generator is always active.					
	For bit 02:					
	0 : Without initial rounding-off					
	1: With initial rounding-off. The selected ramp-up/down time is correspondingly exceeded. The initial rounding-off is sensitive way of specifying small changes (progressive reaction when keys are pressed).					
	The jerk for the initial rounding-off is independent of the ramp-up time and only depends on the selected maximum speed (p 1082). It is calculated as follows:					
	$\mathrm{r}=0.01 \%$ *p1082 [1/s] / 0.13^2 [s^2]					
	The jerk acts up until the maximum acceleration is reached (a_max = p1082 [1/s]/p1047[s]), and then the drive continues to run linearly with a constant rate of acceleration. The higher the maximum acceleration (the lower tha p1047 is), the longer the ramp-up time increases with respect to the set ramp-up time.					
	For bit 03:					
	0 : Non-volatile data save deactivated.					
	1: The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for bit $00=1$).					
	For bit 04:					
	When the bit is set, the ramp-function generator is computed independent of the pulse enable. The actual output value of the motorized potentiometer is always in r1050.					
p1035[0...n]	BI: Motorized potentiometer setpoint raise / Mop raise					
G120C_DP	Acc	ss level: 3	Calculate		Data type: U32	
G120C_PN	Can be changed: T		Scaling: -		Dyn. index: C	
	Unit group: -		Unit selection: -		Func. diagram: 2505, 3020	
	Min		Max		Factory setting	
					[0] 2090.13	
					[1] 0	
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer.					
	The setpoint change (CO: r1050) depends on the set ramp-up time (p1047) and the duration of the signal that is present (BI: p1035).					
Dependency:	Refer to: p1036					
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.					

p1035[0...n]	BI: Motorized potentiometer setpoint raise / Mop raise		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2505, 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r1050) depends on the set ramp-up time (p1047) and the duration of the signal that is present (BI: p1035).		
Dependency:	Refer to: p1036		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2505, 3020
	Min	Max	Factory setting
	-	-	[0] 2090.14
			[1] 0
Description:	Sets the signal source to continuously lower the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r 1050) depends on the set ramp-down time (p 1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	Refer to: p1035		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2505, 3020
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source to continuously lower the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r 1050) depends on the set ramp-down time (p 1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	Refer to: p1035		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1037[0...n]	Motorized potentiometer maximum speed / MotP n_max		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3020
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the maximum speed/velocity for the motorized potentiometer.		
Note:	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value (see function diagram 3020).		

p1038[0...n]	Motorized potentiometer minimum speed / MotP n_min		
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3020
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the minimum speed/velocity for the motorized potentiometer.		
Note:	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value (see function diagram 3020).		
p1040[0...n]	Motorized potentiometer starting value / Mop start value		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3020
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been switched off.		
Dependency:	Only effective if p1030.0 $=0$.		
	Refer to: p1030		
p1043[0...n]	BI: Motorized potentiometer accept setting value / MotP acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to accept the setting value for the motorized potentiometer.		
Dependency:	Refer to: p1044		
Note:	The setting value (CI: p1044) becomes effective for a $0 / 1$ edge of the setting command (BI: p1043).		
p1044[0...n]	CI: Motorized potentiometer setting value / Mop set val		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setting value for the motorized potentiometer.		
Dependency:			
Note:	The setting value (CI: p1044) becomes effective for a $0 / 1$ edge of the setting command (BI: p1043).		
r1045	CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3020
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator.		

p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer.		
	The setpoint is changed from zero up to the speed/velocity limit (p 1082) within this time (if no initial rounding-off has been activated).		
Dependency:	Refer to: p1030, p1048, p1082		
Note:	When the initial rounding-off is activated (p1030.2) the ramp-up time is correspondingly extended.		
p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer.		
	The setpoint is changed from the speed/velocity limit (p1082) to zero within this time (if no initial rounding-off has been activated).		
Dependency:	Refer to: p1030, p1047, p1082		
Note:	The deceleration time is extended corresponding to the activated initial rounding-off (p1030.2).		
$\overline{\mathbf{r 1 0 5 0}}$	CO: Motorized potentiometer setpoint after ramp-function generator / Mot poti setpoint		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3001, 3020
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Sets the effective setpoint after the internal motorized potentiometer ramp-function generator.		
	This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onwards (e.g. with the main setpoint).		
Recommendation:	Interconnect the signal with main setpoint (p1070).		
Dependency:	Refer to: p1070		
Note:	For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI: p0852 (inhibit operation, suppress pulses) the ramp-function generator output (r1050) is set to the starting value (configuration via p 1030.0).		
p1055[0...n]	BI: Jog bit 0 / Jog bit 0		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501, 3030
	Min	Max	Factory setting
			[0] 0
Description:	Sets the signal source for jog 1.		
Recommendation:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p0840, p1058		
Notice:	The drive is enabled for jogging using BI: p1055 or BI: p1056.		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to switch on can also be used to switch off again.		

p1055[0...n]	BI: Jog bit 0 / Jog bit 0		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: T	Scaling: -	Unit selection: -
	Unit group: -	Max	Func. diagram: 2501, 3030

p1056[0...n]	BI: Jog bit 1 / Jog bit 1		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501, 3030
	Min	-	Factory setting
	-	$[0] 0$	
		$[1] 722.1$	

Recommendation: When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.
Dependency: Refer to: p0840, p1059
Notice: \quad The drive is enabled for jogging using BI: p1055 or BI: p1056.
The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.
Only the signal source that was used to switch on can also be used to switch off again.

p1056[0...n]	BI: Jog bit 1 / Jog bit 1		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501, 3030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for jog 2.		
Recommendation:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p0840, p1059		
Notice:	The drive is enabled for jogging using BI: p1055 or BI: p1056.		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to switch on can also be used to switch off again.		
p1058[0...n]	Jog 1 speed setpoint / Jog 1 n_set		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	150.000 [rpm]
Description:	Sets the speed for jog 1.		
	Jogging (JOG) is level--triggered, and allows the motor to be incrementally traversed.		
Dependency:	Refer to: p1055, p1056		

p1059[0...n]	Jog 2 speed setpoint / Jog 2 n_set		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	-150.000 [rpm]
Description:	Sets the speed for jog 2.		
	Jogging (JOG) is level-triggered, and allows the motor to be incrementally traversed.		
Dependency:	Refer to: p1055, p1056		
p1070[0...n]	CI: Main setpoint / Main setpoint		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
G120C_PN	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-	-	[0] 2050[1]
			[1] 0
Description:	Sets the signal source for the main setpoint.		
	Examples:		
	r1024: Fixed speed setpoint effective		
	r1050: Motor. potentiometer setpoint after the ramp-function generator		
Dependency:	Refer to: p1071, r1073, r1078		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1070[0...n]	CI: Main setpoint / Main setpoint		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
G120C_CAN	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-	-	[0] 755[0]
			[1] 0
Description:	Sets the signal source for the main setpoint.		
	Examples:		
	r1024: Fixed speed setpoint effective		
	r1050: Motor. potentiometer setpoint after the ramp-function generator		
Dependency:	Refer to: p1071, r1073, r1078		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1071[0...n]	CI: Main setpoint scaling / Main setp scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the main setpoint.		

r1073	CO: Main setpoint effective / Main setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3030
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective main setpoint.		
	The value shown is the main setpoint after scaling.		
p1075[0...n]	CI: Supplementary setp / Suppl setp		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the supplementary setpoint.		
Dependency:	Refer to: p1076, r1077, r1078		
p1076[0...n]	Cl : Supplementary setpoint scaling / Suppl setp scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the supplementary setpoint.		
r1077	CO: Supplementary setpoint effective / Suppl setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3030
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective supplementary setpoint. The value shown is the additional setpoint after scaling.		
r1078	CO: Total setpoint effective / Total setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3030
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the total effective setpoint.		
	The value indicates the sum of the effective main setpoint and supplementary setpoint.		
p1079	Interpolator clock cycle for speed setpoints / Interp_cyc n_set		
G120C_DP	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
G120C_CAN	Can be changed: U, T	Scaling: -	Dyn. index: -
G120C_PN	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [ms]	127.00 [ms]	0.00 [ms]
Description:	Sets the time with which new speed setpoints are interpolated.		
	With interpolation, the higher-level control adapts the speed setpoint steps to the time grid of the setpoint chann		

Recommendation: For non-synchronous operation, a setting to the maximum time difference between two setpoints is recommended. For sensorless vector control, interpolation should always be activated if the ramp-up and ramp-down times of the ramp-function generator are very short. The drive must be able to follow the external speed setpoint (the drive does not ramp up at the torque limit).
Note: \quad For acceleration precontrol of the speed controller, interpolation prevents torque peaks from occurring if the ramp-up or ramp-down times in the setpoint channel are zero.
When exiting commissioning, the parameter is preset using the automatic calculation if, as setpoint source for the main or supplementary setpoint, a PZD receive word is already set and the ramp-up time is zero. Interpolation is limited to 127 cycles of the setpoint channel.
p1079 $=0 \mathrm{~ms}$: interpolation is deactivated.
$\mathrm{p} 1079=0.01 \mathrm{~ms}$: the interpolation is automatically determined the first time that the speed setpoint is changed. After this, no other changes are made if the send times of the external control increase. Writing to p1079 again initiates the automatic adaptation of the interpolation time.
$\mathrm{p} 1079>0.01 \mathrm{~ms}$: interpolation is performed corresponding to the ratio to the computation clock cycle.

p1080[0...n]	Minimum speed / n		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1)$, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3050, 8022
	Min	Max	Factory setting
	0.000 [rpm]	19500.000 [rpm]	0.000 [rpm]
Description:	Sets the lowest possible motor speed.		
	This value is not undershot in operation.		
Dependency:	Refer to: p1106		
Notice:	The effective minimum speed is formed from p1080 and p1106.		
Note:	The parameter value applies for both motor directions.		
	In exceptional cases, the motor can operate below this value (e.g. when reversing).		

p1081	Maximum speed scaling / n_max scal		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 3050, 3095
	Min	Max	Factory setting
	100.00 [\%]	105.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the maximum speed (p1082).		
	For a higher-level speed control, this scaling allows the maximum speed to be briefly exceeded.		
Dependency:	Refer to: p1082		
Notice:	Continuous operation above a scaling of 100% is not permitted.		
p1082[0...n]	Maximum speed / n_max		
	Access level: 1	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3020, 3050, 3070
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	1500.000 [rpm]
Description:	Sets the highest possible speed.		
	Example:		
	Induction motor p0310 $=50 / 60 \mathrm{~Hz}$ without output filter and Blocksize power unit		
	p1082 < $=60 \times 240 \mathrm{~Hz} / \mathrm{r0313}$ (vector control)		
	p1082 <= $60 \times 550 \mathrm{~Hz} / \mathrm{r} 0313$ (U/f control)		

2.2 List of parameters

Dependency:	For vector control, the maximum speed is restricted to $60.0 /(8.333 \times 500 \mu \mathrm{~s} \times \mathrm{r} 0313)$. This can be identified by a reduction in r1084. p1082 is not changed in this process due to the fact that the operating mode p1300 can be changed over.
	If a sine-wave filter $(\mathrm{p} 0230=3)$ is parameterized as output filter, then the maximum speed is limited corresponding to the maximum permissible filter output frequency (refer to the filter data sheet). When using sine-wave filters (p0230 = 3,4), the maximum speed r1084 is limited to 70% of the resonant frequency of the filter capacitance and the motor leakage inductance.
	For reactors and dU/dt filters, it is limited to 120 Hz / r0313.
	Refer to: p0230, r0313, p0322
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.
Note:	The parameter applies for both motor directions.
	The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).
	The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0310, p0311 and p0322.
	The following limits are always effective for p1082:
	p1082 < $=60 \times$ minimum ($15 \times \mathrm{r0310}, 550 \mathrm{~Hz}$) / pole pair number
	p1082 <= $60 \times$ maximum power unit pulse frequency $/(\mathrm{kx}$ pole pair number), with $\mathrm{k}=12$ (vector control), $\mathrm{k}=6.5$ (U/f control)
	If a sine-wave filter $(\mathrm{p} 0230=3)$ is parameterized as output filter, then the maximum speed is limited corresponding to the maximum permissible filter output frequency (refer to the filter data sheet). For reactors and dU/dt filters, it is limited to 120 Hz / pole pair number.
	During automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$), the parameter value is assigned the maximum motor speed (p0322). For p0322 $=0$ the rated motor speed (p0311) is used as default (pre-assignment) value. For induction motors, the synchronous no-load speed is used as the default value ($\mathrm{p} 0310 \times 60$ / pole pair number).
	For synchronous motors, the following additionally applies:
	During automatic calculation ($\mathrm{p} 0340, \mathrm{p} 3900$), p1082 is limited to speeds where the EMF does not exceed the DC link voltage.
	$p 1082$ is also available in the quick commissioning ($p 0010=1$); this means that when exiting via $p 3900>0$, the value is not changed.
	For vector control, the maximum speed is restricted to $60.0 /(8.333 \times 500 \mu \mathrm{x}$ pole pair number). This can be identified by a reduction in r1084. p1082 is not changed in this process due to the fact that the operating mode p1300 can be changed over.
	When using sine-wave filters ($\mathrm{p} 0230=3,4$), the maximum speed r 1084 is limited to 70% of the resonant frequency of the filter capacitance and the motor leakage inductance.

p1083[0...n] CO: Speed limit in positive direction of rotation / n_limit pos
Access level: $3 \quad$ Calculated: - Data type: FloatingPoint32
Can be changed: U, T Scaling: p2000 Dyn. index: DDS, p0180
Unit group: 3_1 Unit selection: p0505 Func. diagram: 3050
Min Max Factory setting
0.000 [rpm] 210000.000 [rpm] 210000.000 [rpm]

Description: Sets the maximum speed for the positive direction.
Notice: A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.

r1084	CO: Speed limit positive effective / n_limit pos eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3050, 7958
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the active positive speed limit.		
Dependency:	Refer to: p1082, p1083		
Note:	Vector control: r1084 <= $60 \times 240 \mathrm{~Hz} / \mathrm{r0313}$		

p1086[0...n]	CO: Speed limit in negative direction of rotation / n_limit neg		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	-210000.000 [rpm]	0.000 [rpm]	-210000.000 [rpm]
Description:	Sets the speed limit for the negative direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set		
r1087	CO: Speed limit negative effective / n_limit neg eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3050, 7958
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the active negative speed limit.		
Dependency:	Refer to: p1082, p1086		
Note:	Vector control: r1087 >= -60 x $240 \mathrm{~Hz} / \mathrm{r} 0313$		
p1091[0...n]	Skip speed 1 / n_skip 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 1.		
Dependency:	Refer to: p1092, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
Note:	The skip (suppression) speeds can be used to prevent the effects of mechanical resonance.		
p1092[0...n]	Skip speed 2 / n_skip 2		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 2.		
Dependency:	Refer to: p1091, p1101		
Notice:	Skip bandwidths can als	ffective as a result of the	limits in the setpoint channel.
p1101[0...n]	Skip speed bandwidth / n_skip bandwidth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the bandwidth for the skip speeds/velocities 1 to 4 . Refer to: p1091, p1092		
Dependency:			
Note:	The setpoint (reference) speeds are skipped (suppressed) in the range of the skip speed +/-p1101.		
	Steady-state operation is not possible in the skipped (suppressed) speed range. The skip (suppression) range skipped.		

2.2 List of parameters

> Example:
> p1091 = 600 and p1101 = 20
> --> setpoint speeds between 580 and 620 [rpm] are skipped.
> For the skip bandwidths, the following hysteresis behavior applies:
> For a setpoint speed coming from below, the following applies:
> r1170 < $580[\mathrm{rpm}]$ and 580 [rpm] <= r1114 <= 620 [rpm] --> r1119 = 580 [rpm]
> For a setpoint speed coming from above, the following applies:
> $\mathrm{r} 1170>620[\mathrm{rpm}]$ and $580[\mathrm{rpm}]<=r 1114<=620[\mathrm{rpm}] ~-->~ r 1119=620[\mathrm{rpm}]$

p1106[0...n]	CI: Minimum speed signal source / n_min s_src		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 3050
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for lowest possible motor speed.		
Dependency:			
Notice:	The effective minimum speed is formed from p1080 and p1106.		
p1110[0...n]	BI: Inhibit negative direction / Inhib neg dir		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2505, 3040
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to disable the negative direction.		
Dependency:	Refer to: p1111		
p1111[0...n]	BI: Inhibit positive direction / Inhib pos dir		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2505, 3040
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to disable the positive direction.		
Dependency:	Refer to: p1110		

r1112	CO: Speed setpoint after minimum limiting / n_set aft min_lim		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint after the minimum limiting.		
Dependency:			

p1113[0...n]	BI: Setpoint inversion / Setp inv		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2441, 2442, 2505, 3040
	Min	Max	Factory setting
	-	-	[0] 2090.11
			[1] 0
Description:	Sets the signal source to invert the setpoint.		
Dependency:	Refer to: r1198		
Caution:	If the technology controller is being used as the speed main setpoint ($\mathrm{p} 2251=0$), do not invert the setpoint using p1113 when the technology controller is enabled because this can cause the speed to change suddenly and lead to positive couplings in the control loop.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1113[0...n]	BI: Setpoint inversion / Setp inv		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2441, 2442, 2505, 3040
	Min	Max	Factory setting
	-	-	[0] 722.1
			[1] 0
Description:	Sets the signal source to invert the setpoint.		
Dependency:	Refer to: r1198		
Caution:	If the technology controller is being used as the speed main setpoint ($\mathrm{p} 2251=0$), do not invert the setpoint using p1113 when the technology controller is enabled because this can cause the speed to change suddenly and lead to positive couplings in the control loop.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

$\mathbf{r 1 1 1 4}$	CO: Setpoint after the direction limiting / Setp after limit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: $3 _1$	Unit selection: p0505	Func. diagram: $3001,3040,3050$
	Min	Max	Factory setting
	$-[r p m]$	$-[r p m]$	
Description:	Displays the speed/velocity setpoint after the changeover and limiting the direction.		

r1119	CO: Ramp-function generator setpoint at the input / RFG setp at inp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: p2000	Dyn. index: -	
	Unit group: $3 _1$	Unit selection: p0505	Func. diagram: $3050,3070,6300$,
		Max	Factory setting
	Min	$-[r p m]$	$-[r p m]$
	$-[r p m]$		
Description:	Displays the setpoint at the input of the ramp-function generator.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The setpoint is influenced by other functions, e.g. skip (suppressed) speeds, minimum and maximum limits.		

p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 3060, 3070
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	Sets the ramp-down time for the ramp-function generator.		
	The ramp-function generator ramps-down the speed setpoint from the maximum speed (p1082) down to standstill (setpoint $=0$) in this time.		
	Further, the ramp-down time is always effective for OFF1.		
Dependency:	Refer to: p1082, p1123		
Note:	For U/f control and sensorless vector control (see p1300), a ramp-down time of 0 s does not make sense. The setting should be based on the startup times (r0345) of the motor.		

p1123[0...n]	Ramp-function generator minimum ramp-up time / RFG t_RU min		
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	0.000 [s]
Description:	Sets the minimum ramp-up time. The ramp-up time (p 1120) is limited internally to this minimum value.		
Dependency:	Refer to: p1082		
Note:	The setting should be based on the startup times (r0345) of the motor. If the maximum speed p1082 changes, p1123 is re-calculated.		
p1127[0...n]	Ramp-function generator minimum ramp-down time / RFG t_RD min		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	0.000 [s]
Description:	Sets the minimum ramp-down time.		
	The ramp-down time (p1121) is limited internally to this minimum value.		
	The parameter cannot be set shorter than the minimum ramp-up time (p1123).		
Dependency:	Refer to: p1082		

p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the initial rounding-off time for OFF3 for the extended ramp generator.		
p1137[0...n]	OFF3 final rounding-off time / RFG OFF3 t_end_del		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the final rounding-o	F3 for the extended ra	
p1138[0...n]	CI: Ramp-function generator ramp-up time scaling / RFG t_RU scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the ramp-up time of the ramp-function generator.		
Dependency:	Refer to: p1120		
Note:	The ramp-up time is set in p1120.		
p1139[0...n]	CI: Ramp-function generator ramp-down time scaling / RFG t_RD scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the ramp-down time of the ramp-function generator.		
Dependency:	Refer to: p1121		
Note:	The ramp-down time is set in p1121.		
p1140[0...n]	BI: Enable ramp-function generator/inhibit ramp-function generator / Enable RFG		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	[0] 2090.4
			[1] 1
Description:	Sets the signal source for the command "enable ramp-function generator/inhibit ramp-function generator".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 4 (STW1.4). BI: p1140 $=0$ signal:		
	Inhibits the ramp-function generator (the ramp-function generator output is set to zero).		
	BI: p1140 = 1 signal:		
	Enable ramp-function generator.		
Dependency:	Refer to: r0054, p1141, p1142		

2.2 List of parameters

	BI: p1141 = 1 signal:
Continue ramp-function generator.	
Dependency:	Refer to: r0054, p1140, p1142
Caution:	When "master control from PC" is activated, this binector input is ineffective.
Notice:	
	The ramp-function generator is, independent of the state of the signal source, active in the following cases:
	- OFF1/OFF3.
	- ramp-function generator output within the suppression bandwidth.

p1142[0...n]	BI: Enable setpoint/inhibit setpoint / Setpoint enable		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	[0] 2090.6
			[1] 1
Description:	Sets the signal source for the command "enable setpoint/inhibit setpoint".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 6 (STW1.6).		
	BI: p1142 = 0 signal		
	Inhibits the setpoint (the ramp-function generator input is set to zero).		
	BI: p1142 = 1 signal		
	Setpoint enable.		
Dependency:	Refer to: p1140, p1141		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	When the function module "position control" (r0108.3 = 1) is activated, this binector input is interconnected as follows as standard:		
	BI: p1142 $=0$ signal		

p1142[0...n]	BI: Enable setpoint/inhibit setpoint / Setpoint enable		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable setpoint/inhibit setpoint".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 6 (STW1.6).		
	BI: p1142 = 0 signal		
	Inhibits the setpoint (the ramp-function generator input is set to zero).		
	BI: $\mathrm{p} 1142=1$ signal		
	Setpoint enable.		
Dependency:	Refer to: p1140, p1141		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	When the function module "position control" (r0108.3 = 1) is activated, this binector input is interconnected as follows as standard:		
	BI: p1142 $=0$ signal		

r1149	CO: Ramp-function generator acceleration / RFG acceleration			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: -	Scaling: p2007	Dyn. index: -	
	Unit group: 39_1	Unit selection: p0505	Func. diagram: 3070	
	Min	Max	Factory setting	
	- [rev/s ${ }^{2}$]	- [rev/s $\left.{ }^{2}\right]$	- [rev/s²]	
Description:	Displays the acceleration of the ramp-function generator.			
r1150	CO: Ramp-function generator speed setpoint at the output / RFG n_set at outp			
	Access level: 4	Calculated: -	Data type: FloatingPoint32	
	Can be changed: - S	Scaling: p2000	Dyn. index: -	
	Unit group: 3_1 Und	Unit selection: p0505	Func. diagram: -	
	Min	Max	Factory setting	
	- [rpm] -	- [rpm]	- [rpm]	
Description:	Displays the setpoint at the output of the ramp-function generator.			
r1170	CO: Speed controller setpoint sum / Speed setpoint sum			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: - S	Scaling: p2000	Dyn. index: -	
	Unit group: 3_1 Und	Unit selection: p0505	Func. diagram: 3001, 3070, 6300	
	Min	Max	Factory setting	
	- [rpm] -	- [rpm]	- [rpm]	
Description:	Display and connector output for the speed setpoint.			
Dependency:	Refer to: r1150			
r1198.0... 15	CO/BO: Control word setpoint channel / STW setpoint chan			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: - S	Scaling: -	Dyn. index: -	
	Unit group: - Und	Unit selection: -	Func. diagram: 2505	
	Min	Max	Factory setting	
	-		-	
Description:	Display and BICO output for the control word of the setpoint channel.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Fixed setpoint bit 0	Yes	No	3010
	01 Fixed setpoint bit 1	Yes	No	3010
	02 Fixed setpoint bit 2	Yes		3010
	03 Fixed setpoint bit 3	Yes	No	3010
	05 Inhibit negative direction	Yes	No	3040
	06 Inhibit positive direction	Yes	No	3040
	11 Setpoint inversion	Yes	No	3040
	13 Motorized potentiometer raise	Yes	No	3020
	14 Motorized potentiometer lower	Yes		3020
	15 Bypass ramp-function generator	Yes	No	3070
p1200[0...n]	Flying restart operating mode / FlyRest op_mode			
	Access level: 2	Calculated: -	Data type: Integer16	
	Can be changed: U, T	Scaling: -	Dyn. index:	
	Unit group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory sett	
			0	
Description:	Sets the operating mode for flying restart.			
	The flying restart allows the drive converter to be switched on while the motor is still rotating. In so doing, the drive converter output frequency is changed until the actual motor speed/velocity is found. The motor then accelerates up to the setpoint at the ramp-function generator setting.			

2.2 List of parameters

Value:	0: Flying restart inactive		
	1: Flying restart always active (start in setpoint dire		
	4: Flying restart always active (start only in setpoint		
Dependency:	For synchronous motors, flying restart cannot be activated.		
	Refer to: p1201		
	Refer to: F07330, F07331		
Notice:	The "flying restart" function must be used in cases where the motor may still be running (e.g. after a brief line supply interruption) or is being driven by the load. The system might otherwise shut down as a result of overcurrent.		
Note:	For p1200 = 1, 4, the following applies:		
	Flying restart is active after faults, OFF1, OFF2, OFF3.		
	For p1200 = 1, the following applies:		
	The search is made in both directions.		
	For p1200 $=4$, the following applies:		
	The search is only made in the setpoint direction.		
	For U/f control (p1300<20), the following applies:		
	The speed can only be sensed for values above approx. 5% of the rated motor speed. For lower speeds, it is assumed that the motor is at a standstill.		
	If p1200 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1200 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).		
p1201[0...n]	BI: Flying restart enable signal source / Fly_res enab S_src		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source to enable the "flying restart" function.		
Dependency:	Refer to: p1200		
Note:	Withdrawing the enable signal has the same effect as setting p1200 $=0$.		
p1202[0...n]	Flying restart search current / FlyRest I_srch		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10 [\%]	400 [\%]	100 [\%]
Description:	Sets the search current for the "flying restart" function.		
	The value is referred to the motor magnetizing current.		
Dependency:	Refer to: r0331		
Caution:	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.		
Note:	In U/f control mode, the parameter serves as a threshold value for establishing the current at the beginning of the flying restart function. When the threshold value is reached, the actual search current is set as a function of the frequency based on the voltage setpoints.		
	Reducing the search current can also improve flying restart performance (if the system moment of inertia is not very high, for example).		

p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10 [\%]	4000 [\%]	100 [\%]
Description:	Sets the factor for the search speed for flying restart.		
	The value influences the rate at which the output frequency is changed during a flying restart. A higher value results in a longer search time.		
Recommendation:	For sensorless vector control and motor cables longer than 200 m , set the factor p1203 >= 300%.		
Caution:	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.		
	For vector control, a value that is too low or too high can cause flying restart to become unstable.		
Note:	The parameter factory setting is selected so that standard induction motors that are rotating can be found and restarted as quickly as possible (fast flying restart).		
	With this pre-setting, if the motor is not found (e.g. for motors that are accelerated as a result of active loads or with U/f control and low speeds), we recommend that the search rate is reduced (by increasing p1203).		

p1206[0...9]	Automatic restart faults not active / AR fault not act		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	65535	0
Description:	Sets faults for which automatic restart should not be effective.		
Dependency:	The setting is only effective for $\mathrm{p} 1210=6,16,26$.		
	Refer to: p1210		
p1210	Automatic restart mode / AR mode		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	26	0
Description:	Sets the automatic restart mode (AR).		
	The parameters must be saved in the non-volatile memory p0971 = 1 in order that the setting becomes effective.		
Value:	0: Inhibit automatic restart		
	1: Acknowledge all faults without restarting		
	4: \quad Restart after line supply failure w/o additional start attempts		
	6: Restart after fault with additional start attempts		
	14: Restart after line supply failure following man. acknowledgment		
	16: Restart after fault following manual acknowledgment		
	26: Acknowledging all faults and reclosing for an ON command		
Recommendation:	For brief line supply failures, the motor shaft may still be rotating when restarting. The "flying restart" function (p1200) might need to be activated to restart while the motor shaft is still rotating.		
Dependency:	The automatic restart requires an active ON command (e.g., via a digital input). If, for p1210>1, there is no active ON command, then the automatic restart is interrupted.		
	When using an Operator Panel in the LOCAL mode, then there is no automatic start.		
	For p1210 $=14,16$, a manual acknowledgment is required for an automatic restart.		
	Refer to: p0840, p0857		
	Refer to: F30003		
Danger:	If the automatic restart is activated (p1210>1) if there is an ON command (refer to p0840), the drive is switched on as soon as any fault messages that are present can be acknowledged. This also occurs after the line supply returns or the Control Unit boots if the DC link voltage is present again. This automatic switching-on operation can only be interrupted by withdrawing the ON command.		

2.2 List of parameters

Notice: A change is only accepted and made in the state "initialization" and "wait for alarm". When faults are present, therefore, the parameter cannot be changed.
For p1210 > 1, the motor is automatically started.

Note:

For p1210 = 1:
Faults that are present are automatically acknowledged. If new faults occur after a successful fault acknowledgment, then these are also automatically acknowledged again. p1211 has no influence on the number of acknowledgment attempts.
For p1210 = 4:
An automatic restart is only performed if fault F30003 has occurred on the power unit. If additional faults are present, then these faults are also acknowledged and when successful, starting continues. If, for external 24 V power supplies of the Control Unit, additional faults subsequently occur, these are no longer interpreted as line faults and are therefore also not acknowledged.
For p1210 = 6:
An automatic restart is carried out if any fault has occurred
For p1210 = 14:
as for $\mathrm{p} 1210=4$. However, active faults must be manually acknowledged.
For p1210 = 16:
as for $\mathrm{p} 1210=6$. However, active faults must be manually acknowledged.
For p1210 = 26:
as for $\mathrm{p} 1210=6$. For this mode, the switch-on command can be entered with a delay. The restart is interrupted with either OFF2 or OFF3. Alarm A07321 is only displayed if the cause of the fault has been removed and the drive is restarted by setting the switch-on command.

Automatic restart start attempts / AR start attempts		
Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: U, T	Scaling: -	Dyn. index: -
Unit group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
0	10	3

Description:

Notice: \quad After fault F07320 occurs, the switch-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
After a complete power failure (blackout) the start counter always starts with the counter value that applied before the power failure, and decrements this start attempt by 1. If a further attempt to acknowledge is started by the automatic restart function prior to power failure, e.g. when the CU remains active on power failure longer than the time p1212 / 2 , the fault counter will already have been decremented once. In this case, the start counter is thus decreased by the value 2.
Note: A start attempt starts immediately when a fault occurs. The start attempt is considered to been completed if the motor was magnetized ($\mathrm{r} 0056.4=1$) and an additional delay time of 1 s has expired.
As long as a fault is present, an acknowledge command is generated in the time intervals of p1212 / 2. When successfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been completed, then acknowledgment starts again from the beginning.
Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached. After a successful start attempt, i.e. a fault/error has no longer occurred up to the end of the magnetizing phase, the start counter is again reset to the parameter value after 1 s . If a fault re-occurs - the parameterized number of start attempts is again available.
At least one start attempt is always carried out.
After a line supply failure, acknowledgment is immediate and when the line supply returns, the system is switched on. If, between successfully acknowledging the line fault and the line supply returning, another fault occurs, then its acknowledgment also causes the start counter to be decremented.
For p1210 = 26:
The start counter is decremented if after a successful fault acknowledgment, the on command is present.

p1212	Automatic restart delay time start attempts / AR t_wait start
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: U, T Scaling: - Dyn. index: -
	Unit group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	0.1 [s] 1000.0 [s] 1.0 [s]
Description:	Sets the delay time up to restart.
Dependency:	This parameter setting is active for p1210 $=4,6,26$.
	For $\mathrm{p} 1210=1$, the following applies:
	Faults are only automatically acknowledged in half of the waiting time, no restart.
	Refer to: p1210
Notice:	A change is only accepted and made in the state "initialization" and "wait for alarm".
Note:	The faults are automatically acknowledged after half of the delay time has expired and the full delay time. If the cause of a fault is not removed in the first half of the delay time, then it is no longer possible to acknowledge in the delay time.
p1213[0...1]	Automatic restart monitoring time / AR t_monit
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: U, T Scaling: - Dyn. index: -
	Unit group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	0.0 [s] 10000.0 [s] [0]60.0 [s]
	[1] 0.0 [s]
Description:	Sets the monitoring time of the automatic restart (AR).
Index:	$\begin{aligned} & {[0]=\text { Restart }} \\ & {[1]=\text { Reset start counter }} \end{aligned}$
Dependency:	Refer to: p1210
Notice:	A change is only accepted and made in the state "initialization" and "wait for alarm".
	After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
Note:	For index 0 :
	The monitoring time starts when the faults are detected. If the automatic acknowledgments are not successful, the monitoring time runs again. If, after the monitoring time has expired, the drive has still not successfully started again (flying restart and magnetizing of the motor must have been completed: r0056.4 $=1$), then fault F07320 is output.
	The monitoring is deactivated with p1213 $=0$. If $p 1213$ is set lower than the sum of $p 1212$, the magnetizing time p0346 and the additional delay time due to the flying restart, then fault F07320 is generated at each restart. If, for $\mathrm{p} 1210=1$, the time in p 1213 is set lower than in p 1212 , then fault F 07320 is also generated at each restart.
	The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged (e.g. for faults that are permanently present).
	In the case of $p 1210=14,16$, the faults which are present must be acknowledged manually within the time in $\mathrm{p} 1213[0]$. Otherwise, fault F 07320 is generated after the set time.
	For index 1:
	The start counter is only reset to the starting value p1211 if, after successful restart, the time in p1213[1]. The delay time is not effective for fault acknowledgment without automatic restart (p1210 = 1). After a power failure (blackout) the delay time only starts after the line supply returns and the Control Unit boots. The start counter is set to p1211, if F07320 occurred, the switch-on command is withdrawn and the fault is acknowledged.
	The start counter is immediately updated if the starting value p1211 or the mode p1210 is changed.
	For $\mathrm{p} 1210=26$, the fault must have been successfully acknowledged and the switch-on command issued within the time in p1213[0]. Otherwise, fault F07320 is generated after the set time.

p1215	Motor holding brake configuration / Brake config		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2701
	Min	Max	Factory setting
	0	3	0
Description:	Sets the holding brake configuration.		
Value:	0 : \quad No motor holding brake available 3: Motor holding brake like sequence control connection via BICO		
Dependency:	Refer to: p1216, p1217, p1226, p1227, p1228		
Caution: 1 \qquad	For the setting p1215 $=0$, if a brake is used, it remains closed. If the motor moves, this will destroy the brake.		
Notice:	If p1215 was set to 1 or if p1215 was set to 3 , then when the pulses are suppressed, the brake is closed even if the motor is still rotating. Pulse suppression can either be caused by a 0 signal at p0844, p0845 or p0852 or as a result of a fault with OFF2 response. If this is not desirable (e.g. for a flying restart), then the brake can be kept open using a 1 signal at p0855.		
Note:	If a holding brake integrated in the motor is used, then it is not permissible that p1215 is set to 3 . if an external motor holding brake is being used, then p1215 should be set to 3 and r0899.12 should be interconnected as control signal.		
p1216	Motor holding brake opening time / Brake t_open		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2701
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	100 [ms]
Description:	Sets the time to open the motor holding brake.		
	After the holding brake has been controlled (opened), the speed setpoint remains at zero for this time. The speed setpoint is then enabled.		
Recommendation:	This time should be set longer than the actual opening time of the brake. This ensures that the drive cannot accelerate when the brake is applied.		
Dependency:	Refer to: $\mathrm{p} 1215, \mathrm{p} 1217$		
Note:	For a motor with DRIVE-CLiQ and integrated brake, for $\mathrm{p} 0300=10000$, this time is pre-assigned the value saved in the motor.		
$\overline{\mathrm{p} 1217}$	Motor holding brake closing time / Brake t_close		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2701
	Min	Max	Factory setting
	0 [ms]		
Description:	Sets the time to apply the motor holding brake.		
	After OFF1 or OFF3 and the controlling (closing) of the holding brake, the drive remains stationary under closed-loop control for this time with a speed setpoint of zero. The pulses are suppressed when the time expires.		
Recommendation:	This time should be set longer than the actual closing time of the brake. This ensures that the pulses are only suppressed after the brake has closed.		
Dependency:	Refer to: p1215, p1216		
Notice:	If the selected closing time is too short with respect to the actual closing time of the brake, then the load can sag. If the closing time is selected to be too long with respect to the actual closing time of the brake, the control works against the brake and therefore reduces its lifetime.		
Note:	For a motor with DRIVE-CLiQ and integrated brake, for p0300 $=10000$, this time is pre-assigned the value saved in the motor.		

p1226[0...n]	Threshold for zero speed detection / n_standst n_thresh		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 2701, 8022
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	20.00 [rpm]
Description:	Sets the speed threshold for the standstill identification.		
	Acts on the actual value and setpoint monitoring.		
	When braking with OFF1 or OFF3, when the threshold is undershot, standstill is identified.		
Dependency:	Refer to: p1227		
Caution:	For closed-loop speed and torque control without encoder, the following applies:		
A	If p1226 is set to values under approx. 1% of the rated motor speed, then the model switchover limits of the vector control must be increased in order to guarantee reliable shutdown (see p1755).		
Note:	Standstill is identified in the following cases:		
	- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.		
	- the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired.		
	The actual value sensing is subject to measuring noise. For this reason, standstill cannot be detected if the speed threshold is too low.		
p1227	Zero speed detection monitoring time / n_standst t_monit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2701
	Min	Max	Factory setting
	0.000 [s]	300.000 [s]	300.000 [s]
Description:	Sets the monitoring time for the standstill identification.		
	When braking with OFF1 or OFF3, standstill is identified after this time has expired, after the setpoint speed has fallen below p1226 (also refer to p1145).		
Dependency:	The parameter is pre-assigned depending on the size of the power unit. Refer to: p1226		
Notice:	For p1145>0.0 (RFG tracking) the setpoint is not equal to zero dependent on the selected value. This can therefore cause the monitoring time in p1227 to be exceeded. In this case, for a driven motor, the pulses are not suppressed.		
Note:	Standstill is identified in the following cases:		
	- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.		
	- the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired.		
	For p1227 $=300.000$ s the following applies:		
	Monitoring is deactivated.		
	For p1227 $=0.000 \mathrm{~s}$, the following applies:		
	With OFF1 or OFF3 and a ramp-down time = 0 , the pulses are immediately suppressed and the motor "coasts" down.		
	Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.		
p1228	Pulse suppression delay time / Pulse suppr t_del		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2701, 8022
	Min	Max	Factory setting
	0.000 [s]	299.000 [s]	0.010 [s]
Description:	Sets the delay time for pulse suppression.		
	After OFF1 or OFF3, th - the speed actual value - the speed setpoint fall	anceled, if at least one of e threshold in p1226 and reshold in p1226 and the	conditions is fulfilled: rted after this in p1228 has expired. after this in p1227 has expired.
Dependency:	Refer to: p1226, p1227		

2.2 List of parameters

Notice: When the motor holding brake is activated, pulse cancellation is additionally delayed by the brake closing time (p1217).

p1230[0...n]	BI: DC braking activation / DC brake act		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7017
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source to activate DC braking.		
Dependency:	Refer to: p1231, p1232, p1233, p1234, r1239		
Note:	1 signal: DC braking activated.		
	0 signal: DC braking deactivated.		

p1231[0...n]	DC braking configuration / DCBRK config		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: MDS, p0130
	Unit group: -	Unit selection: -	Func. diagram: 7014, 7016, 7017
	Min	Max	Factory setting
	0	14	0
Description:	Setting to activate DC braking.		
Value:	0: No function 4: DC braking 5: DC braking for 14: DC braking belo		
Dependency: Note:	Refer to: p0300, p1232, p1233, p1234, r1239		
	The function can only be used for induction motors ($\mathrm{p} 0300=1$).		
	For p1231 = 4:		
	The function is activated as soon as the activation criterion is fulfilled.		
	- the function can be superseded by an OFF2 response.		
	Activation criterion (one of the following criteria is fulfilled):		
	- binector input p1230 $=1$ signal (DC braking activation, depending on the operating mode).		
	- the drive is not in the state "S4: Operation" or in "S5x".		
	- the internal pulse enable is missing (r0046.19 = 0).		
	DC braking can only be withdrawn ($\mathrm{p} 1231=0$) if it is not being used as a fault response in p2101.		
	In order that DC braking is active as fault response, the corresponding fault number must be entered in p2100 and fault response p2101 set $=6$.		
	For p1231 = 5:		
	DC braking is activated if the OFF1 or OFF3 command is present. Binector input p1230 is ineffective. If the drive speed still lies above the speed threshold p1234, then initially, the drive is ramped-down to this threshold, demagnetized (see p0347) and is then switched into DC braking for the time set in p1233. After this, the drive is switched-off. If, at OFF1, the drive speed is below p1234, then it is immediately demagnetized and switched into DC braking. A change is made into normal operation if the OFF1 command is withdrawn prematurely (the system waits for demagnetization). Flying restart must be activated if the motor is still rotating.		
	DC braking by means of fault response continues to be possible.		
	For p1231 = 14:		
	In addition to the function for p1231 $=5$, binector input p1230 is evaluated.		
	DC braking is only automatically activated when the speed threshold p1234 is fallen below if binector input p1230 $=1$ signal. This is also the case, if no OFF command is present.		
	After demagnetization and after the time in p 1233 has expired, the drive changes back into normal operation or is switched-off (for OFF1/OFF3).		
	If a 0 signal is applied to binector input p1230, for OFF1 and OFF3 no DC braking is executed.		
	Note:		

r1242	Vdc_max controller switch-in level / Vdc_max on_level		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_max controller.		
	If p1254 $=0$ (automatic sensing of the switch-in level = off), then the following applies:		
	r1242 $=1.15$ * sqrt(2) * V_mains $=1.15$ * sqrt(2) * p0210 (supply voltage)		
	If p1254 $=1$ (automatic sensing of the switch-in level = on), then the following applies:		
	r1242 = Vdc_max - 50.0 V (Vdc_max: Overvoltage threshold of the power unit)		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Notice:	If the activation level of the Vdc_max controller is already exceeded in the deactivated state (pulse inhibit) by the DC link voltage, then the controller can be automatically deactivated (see F07401), so that the drive is not accelerated the next time that it is activated.		
Note:	The Vdc_max controller is not switched back off until the DC link voltage falls below the threshold 0.95 * r1242 and the controller output is zero.		

p1243[0...n]	Vdc_max controller dynamic factor / Vdc_max dyn_factor		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1250, p1251, and p1252 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case p1250, p1251, p1252 are weighted with the dynamic factor p1243.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1245[0...n]	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	65 [\%]	150 [\%]	76 [\%]
Description:	Sets the switch-in level for the Vdc-min controller (kinetic buffering).		
	The value is obtained as follows:		
	$\mathrm{r} 1246[\mathrm{~V}]=\mathrm{p} 1245[\%]$ * sqrt(2) * 00210		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p0210		
Warning:	An excessively high value possibly negatively influences normal drive operation, and can mean that after the line supply returns, the Vdc minimum control can no longer be exited.		
r1246	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	- [V]	- [V]	
Description:	Displays the switch-in level for the Vdc_min controller (kinetic buffering).		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	The Vdc_min controller is not switched back off until the DC link voltage rises above the threshold 1.05 * p1246 and the controller output is zero.		
p1247[0...n]	Vdc_min controller dynamic factor (kinetic buffering) / Vdc_min dyn_factor		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	300 [\%]
Description:	Sets the dynamic factor for the Vdc_min controller (kinetic buffering).		
	100% means that p1250, p1251, and p1252 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case p1250, p1251, p1252 are weighted with the dynamic factor p1247.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		

p1249[0...n]	Vdc_max controller speed threshold / Vdc_max n_thresh		
	Access level: 3	Calculated: p0340 $=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180

$\mathbf{p 1 2 5 0 [0 . . . n] ~}$	Vdc controller proportional gain / Vdc_ctrl Kp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	100.00	Factory setting
	0.00	1.00	
Description:	Sets the proportional gain for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective proportional gain is obtained taking into account p1243 (Vdc_max controller dynamic factor) and the		
	DC link capacitance of the power unit.		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		

p1251[0...n]	Vdc controller integral time / Vdc_ctrl Tn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	$0[\mathrm{~ms}]$	$10000[\mathrm{~ms}]$	[ms]
Description:	Sets the integral time for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective integral time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	p1251 $=0:$ The integral component is deactivated.		

p1252[0...n]	Vdc controller rate time / Vdc_ctrl t_rate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	$0[\mathrm{~ms}]$	1000 [ms]	0 [ms]
Description:	Sets the rate time constant for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective rate time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		

p1254	Vdc_max controller automatic ON level detection / Vdc_max SenseOnLev		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	1
Description:	Activates/deactivates the automatic sensing of the switch-in level for the Vdc_max controller.		
Value:	0: Automatic detection inhibited 1: Automatic detection enabled		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096-1)		
p1255[0...n]	Vdc_min controller time threshold / Vdc_min t_thresh		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	1800.000 [s]	0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized. Prerequisite: p1256 = 1		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Notice:	If a time threshold has been parameterized, the Vdc_max controller should also be activated ($\mathrm{p} 1240=3$) so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.		

p1256[0...n]	Vdc_min controller response (kinetic buffering) /Vdc_min response		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0

Description: Sets the response for the Vdc_min controller (kinetic buffering)
Value: $\quad 0: \quad$ Buffer Vdc until undervoltage, $n<p 1257$-> F07405
1: Buff. Vdc until undervolt., $\mathrm{n}<\mathrm{p} 1257$-> $\mathbf{F 0 7 4 0 5 , t > p 1 2 5 5 - > ~ F 0 7 4 0 6}$
Dependency: \quad Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1) Refer to: F07405, F07406

p1257[0...n]	Vdc_min controller speed threshold / Vdc_min n_thresh		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized Kinetic buffering is not started below the speed threshold.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	Exiting the Vdc_min control before reaching motor standstill prevents the regenerative braking current from increasing significantly at low speeds, and after a pulse inhibit, means that the motor coasts down. However, the maximum braking torque can be set via the appropriate torque limiting.		

r1258	CO: Vdc controller output / Vdc_ctrl output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index:-
	Unit group: 6_2	Unit selection: p0505	Func. diagram: 6220
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	The regenerative power limit p1531 is used for vector control to precontrol the Vdc_max controller. The lower the power limit is set, the lower the correction signals of the controller when the voltage limit is reached.		

p1271[0...n]	Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [Hz]	650 [Hz]	$0[\mathrm{~Hz}]$
Description:	Sets the maximum search frequency for a flying restart in an inhibited setpoint direction (p1110, p1111).		
Note:	The parameter has no effect for an operating mode, which only searches in the setpoint direction (p1200 > 3).		
p1280[0...n]	Vdc controller configuration (U/f) / Vdc_ctr config U/f		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6300, 6320
	Min	Max	Factory setting
	0	1	1
Description:	Sets the configuration of the controller for the DC link voltage (Vdc controller) in the U/f operating mode.		
Value:	0 : Inhibit Vdc ctrI 1: Enable Vdc_max controller		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
Note:	For high input voltages (p0210), the following settings can improve the degree of ruggedness of the Vdc_max controller:		
	- set the input voltage as low as possible, and in so doing, avoid A07401 (p0210).		
	- set the rounding times (p1130, p1136).		
	- increase the ramp-down times (p1121).		
	- reduce the integral time of the controller (p1291), factor 0.5.		
	- reduce the rate time of the controller (p1292, factor 0.5).		
	In this case, we generally recommend to use vector control (p1300 = 20) (Vdc controller, see p1240).		
	If a braking resistor is connected to the DC link ($\mathrm{O} 219>0$) , then the Vdc max control is automatically deactiv		

p1281[0...n]	Vdc controller configuration / Vdc ctrl config					
	Access level: 3		Calculated: $\mathrm{p} 0340=1$		Data type: Unsigned16	
	Can be changed: U, T		Scaling: -		Dyn. index: DDS, p0180	
	Unit group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-		-		0000 bin	
Description:	Sets the configuration for the DC link voltage controller.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Vdc min control (ramp	Yes	No	-
		Vdc min shorter returns	the line	Yes	No	-
Dependency:		vible with applicat	namic Driver	ontrol" (DD		

Note: | For bit 00: |
| :--- |
| De-activate the ramp-up for Vdc_min control. |
| For drives with a mechanical system that can oscillate and high moment of inertia, the speed can be more quickly |
| tracked. |
| For bit 02: |
| When the line supply returns, normal operation is resumed earlier, and the system does not wait until the Vdc min |
| controller reaches the setpoint speed. |

r1282	Vdc_max controller switch-in level (U/f) / Vdc_max on_level		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_max controller.		
	If p1294 $=0$ (automatic sensing of the switch-in level = off), then the following applies:		
	r1282 $=1.15$ * sqrt(2) * p0210 (supply voltage)		
	If p1294 $=1$ (automatic sensing of the switch-in level = on), then the following applies:		
	$\mathrm{r} 1282=$ Vdc_max - 50.0 V (Vdc_max: Overvoltage threshold of the power unit)		
	r1282 = Vdc_max - 25.0 V (for 230 V power units)		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
Notice:	If the activation level of the Vdc_max controller is already exceeded in the deactivated state (pulse inhibit) by the DC link voltage, then the controller can be automatically deactivated (see F07401), so that the drive is not accelerated the next time that it is activated.		
Note:	The Vdc_max controller is not switched back off until the DC link voltage falls below the threshold 0.95 * r1282 and the controller output is zero.		

p1283[0...n]	Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1290, p1291, and p1292 (gain, integral time, and rate time) are used in accordance with their basic settings and on the basis of a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case, p1290, p1291, and p1292 are weighted with the dynamic factor p1283.		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		

p1284[0...n]	Vdc_max controller time threshold (U/f) / Vdc_max t_thresh		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	300.000 [s]	4.000 [s]
Description:	Sets the monitoring time for the Vdc_max controller.		
Dependency:	Not visible with applicati	namic Drive Control" (DD	

p1288[0...n]	Vdc_max controller feedback coupling factor ramp-fct. gen. (U/f) /
	Vdc_max factor RFG

Access level: 4	Calculated: -	Data type: FloatingPoint32
Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
Unit group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
0.000	100.000	0.500

Description: Sets the feedback factor for the ramp-function generator. Its ramp times are decelerated relative to the output signal of the Vdc_max controller.
Dependency: Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)
Note: \quad For values $\mathrm{p} 1288=0.0$ to 0.5 , the controller dynamics are automatically adapted internally.

$\mathbf{p 1 2 9 0 [0 . . . n] ~}$	Vdc controller proportional gain (U/f)/Vdc_ctrl Kp		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Max selection: -	Func. diagram: 6320
	0.00	100.00	Factory setting
Description:	Sets the proportional gain for the Vdc controller (DC link voltage controller).		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
Note:	The gain factor is proportional to the capacitance of the DC link.		
	The parameter is pre-set to a value that is optimally adapted to the capacitance of the power unit.		

p1291[0...n]	Vdc controller integral time (U/f) / Vdc_ctrl Tn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	40 [ms]
Description:	Sets the integral time for the Vdc controller (DC link voltage controller).		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
p1292[0...n]	Vdc controller rate time (U/f) / Vdc_ctrl t_rate		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	10 [ms]
Description:	Sets the rate time constant for the Vdc controller (DC link voltage controller).		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096-2)		
p1293[0...n]	Vdc min controller output limit (U/f) / Vdc_min outp_lim		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	0.00 [Hz]	600.00 [Hz]	600.00 [Hz]
Description:	Sets the output limit for the Vdc min controller (DC link undervoltage controller).		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 = 2)		

p1297[0...n]	Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized .		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
Note:	Exiting the Vdc_min control before reaching motor standstill prevents the regenerative braking current from increasing significantly at low speeds, and after a pulse inhibit, means that the motor coasts down.		

r1298	CO: Vdc controller output (U/f) / Vdc_ctrl output		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 6320
	Min	Max	Factory setting
	- [rpm]	$-[$ rpm	$-[$ rpm $]$
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 =2)		

For bit 05 (only effective for p1302.4 = 1):
The starting current when accelerating (p1311) generally results in an increase in the absolute current and flux. With p1302.5 = 1 the current is only increased in the direction of the load. p1302.5-in conjunction with p1310 and p1311 - are decisive when it comes to defining the quality of the starting response.

For bit 07:
For field orientation (bit04 = 1), an Iq, max controller supports the current limiting controller (see p1341). Inhibiting the integral component can prevent the drive from stalling under overload conditions.
For bit 08 :
Taking into account the saturation characteristic can be activated to improve faster starting operations for high-rating motors.
For bit 09:
For field orientation (bit04 = 1), while the induction motor is being magnetized, the current is automatically increased if the magnetization time p0346 is shortened.

p1310[0...n]	Starting current (voltage boost) permanent / I_start (Ua) perm
	Access level: $2 \quad$ Calculated: $\mathrm{p} 0340=1$ Data type: FloatingPoint32
	Can be changed: U, T Scaling: - Dyn. index: DDS, p0180
	Unit group: - Unit selection: - Func. diagram: 6300, 6301, 6851
	Min Max Factory setting
	0.0 [\%] 250.0 [\%] 50.0 [\%]
Description:	Defines the voltage boost as a [\%] referred to the rated motor current (p0305).
	The magnitude of the permanent voltage boost is reduced with increasing frequency so that at the rated motor frequency, the rated motor voltage is present.
	The magnitude of the boost in Volt at a frequency of zero is defined as follows:
	Voltage boost [V] $=1.732 \times \mathrm{p} 0305$ (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) $\times \mathrm{p} 1310$ (permanent voltage boost [\%]) / 100 \%
	At low output frequencies, there is only a low output voltage in order to maintain the motor flux. However, the output voltage can be too low in order to achieve the following:
	- magnetize the induction motor.
	- hold the load.
	- compensate for losses in the system.
	This is the reason that the output voltage can be increased using p1310.
	The voltage boost can be used for both linear as well as square-law U/f characteristics.
	For field orientation (p1302.4 = 1, default setting for Standard Drive Control p0096 = 1), in the vicinity of low output frequencies, a minimum current is impressed with the magnitude of the rated magnetizing current. In this case, for $\mathrm{p} 1310=0 \%$, a current setpoint is calculated that corresponds to the no-load case. For p1610 $=100 \%$, a current setpoint is calculated that corresponds to the rated motor current.
Dependency:	The starting current (voltage boost) is limited by the current limit p0640.
	Only for p1302.4 = 0 (no field orientation):
	The accuracy of the starting current depends on the setting of the stator and feeder cable resistance (p0350, p0352).
	For vector control, the starting current is realized using p1610.
	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)
	Refer to: p1300, p1311, p1312, r1315
Notice:	The starting current (voltage boost) increases the motor temperature (particularly at zero speed).
Note:	The starting current as a result of the voltage boost is only effective for U/f control (p1300).
	The boost values are combined with one another if the permanent voltage boost (p 1310) is used in conjunction with other boost parameters (acceleration boost (p1311), voltage boost for starting (p1312)).
	However, these parameters are assigned the following priorities: p1310 > p1311, p1312
	For field orientation (p1302 bit $4=1$, not PM230, PM250, PM260), then p1310 together with p1311 and p1302.5 are mainly responsible for the quality of the drive response.

p1320[0...n]	U/f control programmable characteristic frequency 1 / Uf char f1		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6301
	Min	Max	Factory setting
	0.00 [Hz]	$3000.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the first point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300 $=3$.		
	The following applies to the frequency values: p1320 <= p1322 <= p1324 <= p1326. Otherwise, a standard characteristic is used that contains the rated motor operating point.		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 $=2$)		
	Refer to: p1300, p1310, p1311, p1321, p1322, p1323, p1324, p1325, p1326, p1327		
Note:	Linear interpolation is carried out between the points $0 \mathrm{Hz/p1310}, \mathrm{p} 1320 / \mathrm{p} 1321 \ldots \mathrm{p} 1326 / \mathrm{p} 1327$.		
	The voltage boost when accelerating (p1311) is also applied to the freely programmable U/f characteristic.		
p1321[0...n]	U/f control programmable characteristic voltage 1 / Uf char U1		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6301
	Min	Max	Factory setting
	0.0 [Vrms]	10000.0 [Vrms]	0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the first point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300 $=3$.		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 =2)		
	Refer to: p1310, p1311, p1320, p1322, p1323, p1324, p1325, p1326, p1327		
Note:	Linear interpolation is carried out between the points 0 Hz/p1310, p1320/p1321 ... p1326/p1327.		
	The voltage boost when accelerating (p 1311) is also applied to the freely programmable U/f characteristic.		

p1322[0...n]	U/f control programmable characteristic frequency 2 / Uf char f2		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6301
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	$0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the second point along the characteristic.		
Dependency:	The following applies to the frequency values: p1320 <= p1322 <= p1324 <= p1326. Otherwise, a standard characteristic is used that contains the rated motor operating point.		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 $=2$)		

p1323[0...n]	U/f control programmable characteristic voltage 2 / Uf char U2		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6301
	Min	Max	Factory setting
	0.0 [Vrms]	10000.0 [Vrms]	0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the second point along the characteristic.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 $=2$)		
	Refer to: p1310, p1311, p1320, p1321, p1322, p1324, p1325, p1326, p1327		

p1324[0...n]	U/f control programmable characteristic frequency $\mathbf{3} /$ Uf char f3		
	Access level: 3	Calculated: p0340 =	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180

p1326[0...n]	U/f control programmable characteristic frequency 4 / Uf char f4		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6301
	Min	Max	Factory setting
	0.00 [Hz]	$10000.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the frequency of the fourth point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300 $=3$.		
	The following applies for the frequency values:		
	p1320 <= p1322 <= p1324 <= p1326		
	Otherwise, a standard characteristic is used that contains the rated motor operating point.		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 = 2)		
	Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1324, p1325, p1327		

2.2 List of parameters

Warning:	An excessively low value can result in instability.		
Note:	For $\mathrm{p} 1333=0 \mathrm{~Hz}$, the FCC starting frequency is automatically set to 6% of the rated motor frequency.		
p1334[0...n]	U/f control slip compensation starting frequency / Slip comp start		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	0.00 [Hz]
Description:	Sets the starting frequency of the slip compensation.		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096-2)		
Note:	For p1334 $=0$, the starting frequency of the slip compensation is automatically set to 6% of the rated motor frequency.		
p1335[0...n]	Slip compensation scaling / Slip comp scal		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6300, 6310
	Min	Max	Factory setting
	0.0 [\%]	600.0 [\%]	0.0 [\%]
Description:	Sets the setpoint for slip compensation in [\%] referred to r0330 (motor rated slip). p1335 $=0.0 \%$: Slip compensation deactivated. p1335 = 100.0 \%: The slip is completely compensated.		
Dependency:	Prerequisite for a precise slip compensation for p1335 = 100% are the precise motor parameters (p0350 ... p0360). If the parameters are not precisely known, a precise compensation can be achieved by varying p1335.		
	For U/f control types with Eco optimization (4 and 7), the slip compensation must be activated in order to guarantee correct operation.		
	For p0096 = 1 (Standard Drive Control), the scaling of the slip compensation is set as default to 100%. Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
Note:	The purpose of slip compensation is to maintain a constant motor speed regardless of the applied load. The fact that the motor speed decreases with increasing load is a typical characteristic of induction motors.		
	For synchronous motors, this effect does not occur and the parameter has no effect in this case.		
	For the open-loop control modes p1300 $=5$ and 6 (textile sector), the slip compensation is internally disabled in order to be able to precisely set the output frequency.		
	If $p 1335$ is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1335 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).		

p1336[0...n] Slip compensation limit value / Slip comp lim val

Access level: 3	Calculated: -	Data type: FloatingPoint32
Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
Unit group: -	Unit selection: -	Func. diagram: 6310
Min	Max	Factory setting
$0.00[\%]$	600.00 [\%]	250.00 [\%]
Sets the limit value for slip compensation in [\%] referred to r0330 (motor rated slip).		
Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		

r1337	CO: Actual slip compensation / Slip comp act val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual compensated slip [\%] referred to r0330 (rated motor slip).		
Dependency:	p1335 > 0 \%: Slip compensation active.		
	Not visible with application class: "Dynamic Drive Control" (DDC, p0096-2)		
	Refer to: p1335		
p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6300, 6310
	Min	Max	Factory setting
	0.00	100.00	0.00
Description:	Sets the gain for resonance damping for U/f control.		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
	Refer to: p1300, p1349		
Note:	The resonance damping function dampens active current oscillations that frequency occur under no-load conditions.		
	The resonance damping is active in a range from approximately 6% of the rated motor frequency (p 0310). The shutoff frequency is determined by p 1349 .		
	For the open-loop control modes p1300 $=5$ and 6 (textile sectors), the resonance damping is internally disabled in order that the output frequency can be precisely set.		
p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	0.000	0.500	0.000
Description:	Sets the proportional gain of the I_max frequency controller.		
	The I_max controller reduces the drive converter output current if the maximum current (r0067) is exceeded.		
	In the U/f operating modes (p1300) for the I_max control, one controller is used that acts on the output frequency and one controller that acts on the output voltage. The frequency controller reduces the current by decreasing the converter output frequency. The frequency is reduced down to a minimum value (equaling twice rated slip). If the overcurrent condition cannot be successfully resolved using this measure, then the drive converter output voltage is reduced using the I_max voltage controller. Once the overcurrent condition has been resolved, the drive is accelerated along the ramp set in p1120 (ramp-up time).		
Dependency:	In the U/f modes (p1300) for textile applications and for external voltage setpoints, only the I_max voltage controller is used.		
	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
Notice:	When deactivating the I_max controller, the following must be carefully observed:		
	When the maximum current (r0067) is exceeded, the output current is no longer reduced. The drive is switched off when the overcurrent limits are exceeded.		
Note:	$\mathrm{p} 1341=0$:		
	I_max frequency controller deactivated and I_max voltage controller activated over the complete speed range.		

2.2 List of parameters

p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	0.000 [s]	50.000 [s]	0.300 [s]
Description:	Sets the integral time for the I_max frequency controller.		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
	Refer to: p1340		
Note:	When p1341 = 0 , the current limiting controller influencing the frequency is deactivated and only the current limiting controller influencing the output voltage remains active ($\mathrm{p} 1345, \mathrm{p} 1346$).		
	This current limiting function is de-activated with $\mathrm{p} 1340=\mathrm{p} 1341=0$.		
r1343	CO: I_max controller frequency output / I_max_ctrl f_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 6300
			Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective frequency limit.		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
	Refer to: p1340		
r1344	I_max controller voltage output / I_max_ctrl U_outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: 5_1	Unit selection: p0505	Func. diagram: 6300
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the amount by which the converter output voltage is reduced.		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
	Refer to: p1340		
p1345[0...n]	I_max voltage controller proportional gain / I_max_U_ctrl Kp		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain for the I_max voltage controller.		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096-2)		
	Refer to: p1340		
Note:	The controller settings are also used in the current controller of the DC braking (refer to p1232).		

p1346[0...n]	I_max voltage controller integral time / I_max_U_ctrl Tn		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	0.000 [s]	50.000 [s]	0.030 [s]
Description:	Sets the integral time for the I_max voltage controller.		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
	Refer to: p1340		
Note:	The controller settings are also used in the current controller of the DC braking (refer to p1232). For p1346 $=0$, the following applies: The integral time of the I_max voltage controller is deactivated.		

r1348	CO: U/f control Eco factor actual value / U/f Eco fac act v		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6300, 6301
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the economic factor determined for optimizing motor consumption.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 $=2$)		
	Refer to: p1335		
Note:	The value is only determined for operating modes with Economic (p1300 $=4,7$).		
p1349[0...n]	U/f mode resonance damping maximum frequency / Uf res_damp f_max		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	$0.00[\mathrm{~Hz}]$
Description:	Sets the maximum output frequency for resonance damping for U/f control.		
Dependency:	Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
Note:	For p1349 $=0$, the changeover limit is automatically set to 95% of the rated motor frequency - however, to a max. of 45 Hz .		

p1351[0...n]	CO: Motor holding brake starting frequency / Brake f_start		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	-300.00 [\%]	300.00 [\%]	0.00 [\%]
Description:	Sets the frequency setting value at the slip compensation output for starting up with motor holding brake. When setting p1351>0, then slip compensation is automatically activated ($\mathrm{p} 1335=100 \%$).		
Dependency:			
	Refer to: p1302, p1352		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	Connected with p1352 a value of 100\% corresponds to the motor rated slip (r0330).		

2.2 List of parameters

p1352[0...n]	CI: Motor holding brake starting frequency signal source / Brake f_start		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32

p1382[0...n]	Saturation limit for flux setpoint / Max FluxSaturation		
	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	100 [\%]	130 [\%]	100 [\%]
Description: Dependency:	Maximum flux setpoint (saturation limit) for calculating the EMF in the range of the impressed starting current. Not visible with application class: "Dynamic Drive Control" (DDC, p0096 = 2)		
p1400[0...n]	Speed control configuration / n_ctrl config		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6490
	Min	Max	Factory setting
	-	-	0000000000000000100000000010 0001 bin

Description:	Sets the configuration for the closed-loop speed control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Automatic Kp/Tn adaptation active	Yes	No	6040
	01	Sensorless vector control freeze I comp	Yes	No	6040
	05	$\mathrm{Kp} / \mathrm{Tn}$ adaptation active	Yes	No	6040
	06	Free Tn adaptation active	Yes	No	6050
	14	Torque precontrol	Always active	For n_ctrl enab	6060
	15	Sensorless vector control speed precontrol	Yes	No	6030
	16	I component for limiting	Enable	Hold	6030
	18	Moment of inertia estimator active	Yes	No	6030
	20	Acceleration model	ON	OFF	6031
	22	Obtain moment of inertia estimator value for pulse inhibit	Yes	No	6030
	24	Moment of inertia estimator fast estimation active	Yes	No	6030
	25	Acceleration torque instantaneous in the I/f mode	Yes	No	-
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)				
Note:	For bit 01:				
	When the bit is set, the I component of the speed controller is kept when changing into the open-loop controlled mode.				

2.2 List of parameters

For bit 20:
The acceleration model for the speed setpoint is only active if p1496 is not zero.
For bit 25:
When the bit is set, for high dynamic starting in the l/f mode, the acceleration precontrol torque smoothing only has a short minimum time (4 ms)

r1406.4... 15	CO/BO: Control word speed controller / STW n_ctrl				
	Access level: 4 C		Calculated: -	Data type: Unsigned16	
	Can be changed: - S		Scaling: -	Dyn. index: -	
	Unit group: - U		Unit selection: -	Func. diagram: -	
	Min M		Max	Factory setting	
	-	-		-	
Description:	Display and BICO output for the control word of the speed controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	04	Hold speed controller I component	Yes	No	6040
	05	Set speed controller I component	Yes	No	6040
	11	Reserved	-	-	-
		Set speed adaptation controller I component	Yes	No	-
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 =2)				

2.2 List of parameters

r1407.0... 27	CO/BO: Status word speed controller / ZSW n_ctrl				
	Access level: 4		Calculated: -	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dyn. index:-	
	Unit group: -		Unit selection: -	Func. diagram: 2522	
	Min		Max	Factory setting	
	-	-		-	
Description:	Display and BICO output for the status word of the speed controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	U/f control active	Yes	No	-
	01	Encoderless operation active	Yes	No	-
	02	Torque control active	Yes	No	6030, 6060, 8011
	03	Speed control active	Yes	No	6040
	05	Speed controller I component frozen	Yes	No	6040
	06	Speed controller I component set	Yes	No	6040
	07	Torque limit reached	Yes	No	6060
	08	Upper torque limit active	Yes	No	6060
	09	Lower torque limit active	Yes	No	6060
	10	Reserved	-	-	-
	11	Speed setpoint limited	Yes	No	6030
	12	Ramp-function generator set	Yes	No	-
	13	Encoderless operation due to a fault	Yes	No	-
	14	l/f control active	Yes	No	-
	15	Torque limit reached (without precontrol)	Yes	No	6060
	17	Speed limiting control active	Yes	No	6640
	23	Acceleration model activated	Yes	No	-
	24	Moment of inertia estimator active	Yes	No	-
	25	Load estimate active	Yes	No	-
	26	Moment of inertia estimator stabilized	Yes	No	-
	27	Moment of inertia estimator fast estimation active	Yes	No	-
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)				
r1408.0... 14	CO/BO: Status word current controller / ZSW I_ctrl				
	Access level: 4		Calculated: -	Data type: Unsigned16	
	Can be changed: - Scaling: -			Dyn. index: -	
	Unit group: - Unit selection: -			Func. diagram: 2530	
	Min Max			Factory setting	
	-	-- ${ }^{-}$- ${ }^{\text {- }}$ -		-	
Description:	Display and BICO output for the status word of the current controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Current controller active	Active	Not active	
	01	Id control I component limiting	Active	Not active	6714
	03	Voltage limiting	Active	Not active	6714
	10	Speed adaptation limiting	Active	Not active	-
	12	Motor stalled	Yes	No	-
	13	Separately excited synchronous motor is excited	Yes	No	-
	14	Current model SESM magnetizing excit. current limited to zero	Yes	No	-
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)				

r1438	CO: Speed controller speed setpoint / n_ctrl n_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 3001, 6020, 6031
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output of the speed setpoint after setpoint limiting for the P component of the speed controller. For U/f operation, the value that is displayed is of no relevance.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
r1445	CO: Actual speed smoothed / n_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 6040
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the actual smoothed speed actual value of the speed control.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096-1)		
p1452[0...n]	Speed controller speed actual value smoothing time (sensorless) / n_C n_act T_s SL		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6020, 6040
	Min	Max	Factory setting
	0.00 [ms]	32000.00 [ms]	10.00 [ms]
Description: Dependency:	Sets the smoothing time for the actual speed of the speed controller for encoderless closed-loop speed control.		
Note:	The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 $=4$).		
p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SL Kp		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6040, 6050
	Min	Max	Factory setting
	0.000	999999.000	0.300
Description:	Sets the P gain for encoderless operation for the speed controller.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	The product p $0341 \times \mathrm{p} 0342$ is taken into account when automatically calculating the speed controller ($\mathrm{p} 0340=1,3$, 4).		
p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SL Tn		
	Access level: 2	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6040, 6050
	Min	Max	Factory setting
	0.0 [ms]	100000.0 [ms]	20.0 [ms]
Description:	Set the integral time for encoderless operation for the speed controller.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	The integral component is stopped if the complete controller output or the sum of controller output and torque precontrol reach the torque limit.		

p1498[0...n]	Load moment of inertia / Load M_inertia		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 25_1	Unit selection: p0100	Func. diagram: 6031
	Min	Max	Factory setting
	0.00000 [kgm^{2}]	$100000.00000\left[\mathrm{kgm}^{2}\right]$	0.00000 [kgm^{2}]
Description:	Sets the load moment of inertia.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	(p0341 * p0342) + p1498 influence the speed/torque pre-control in encoderless operation.		
p1502[0...n]	BI: Freeze moment of inertia estimator / J_estim freeze		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-		0
Description:	Sets the signal source to freeze the estimated moment of inertia.		
	0 signal:		
	Moment of inertia estimator active		
	1 signal:		
	Determined moment of inertia frozen.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1300		
Note:	Only active when the "moment of inertia estimator" function module is active (r0108.10 = 1) and p1400.18=1.		
r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 6030, 6060, 6722
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the torque setpoint before entering the supplementary torque.		
	For closed-loop speed control, r1508 corresponds to the speed controller output.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1511[0...n]	CI: Supplementary torque 1 / M_suppl 1		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 6020, 6060
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source for supplementary torque 1.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1512[0...n]	CI: Supplementary torque 1 scaling / M_suppl 1 scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 5060, 6060
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for scaling the supplementary torque 1.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		

r1515	Supplementary torque total / M_suppl total		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 6020, 6060
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the total supplementary torque. The displayed value is the total of supplementary torque values 1 and 2 .		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
r1516	CO: Supplementary torque and acceleration torque / M_suppl + M_accel		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 6060
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the total supplementary torque and the accelerating torque.		
	The displayed value is the total of the smoothed supplementary torque and the accelerating torque.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6060
	Min	Max	Factory setting
	0.00 [ms]	100.00 [ms]	4.00 [ms]
Description:	Sets the smoothing time constant of the accelerating torque.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	The acceleration precontrol is inhibited if the smoothing is set to the maximum value.		
p1520[0...n]	CO: Torque limit upper / M_max upper		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2003	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 6020, 6630
	Min	Max	Factory setting
	-1000000.00 [Nm]	20000000.00 [Nm]	$0.00[\mathrm{Nm}]$
Description:	Sets the fixed, upper tor		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1521, p1522, p1523, r1538, r1539		
Danger:	Negative values when setting the upper torque limit (p1520 < 0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p 0640).		

p1521[0...n]	CO: Torque limit lower / M_max lower		
	Access level: 2	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2003	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 6020, 6630
	Min	Max	Factory setting
	-20000000.00 [Nm]	$1000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the fixed, lower torque limit.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1520, p1522, p1523		
Danger:	Positive values when setting the lower torque limit (p1521>0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p 0640).		
p1522[0...n]	CI: Torque limit upper / M_max upper		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 6630
	Min	Max	Factory setting
	-	-	1520[0]
Description:	Sets the signal source for the upper torque limit.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1520, p1521, p1523		
Danger:	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
p1523[0...n]	CI: Torque limit lower / M_max lower		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 6020, 6630
	Min	Max	Factory setting
		-	1521[0]
Description:	Sets the signal source for the lower torque limit.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1520, p1521, p1522		
Danger:	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
p1524[0...n]	CO: Torque limit upper scaling / M_max upper scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6630
	Min	Max	Factory setting
	-2000.0 [\%]	2000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the upper torque limit.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	This parameter can be freely interconnected.		

p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6630
	Min	Max	Factory setting
	-2000.0 [\%]	2000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the lower torque limit.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	This parameter can be freely interconnected.		
r1526	CO: Torque limit upper without offset / M_max up w/o offs		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 6060, 6630, 6640
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the upper torque limit of all torque limits without offset.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1520, p1521, p1522, p1523		
r1527	CO: Torque limit lower without offset / M_max low w/o offs		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 6060, 6630, 6640
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the lower torque limit of all torque limits without offset.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1520, p1521, p1522, p1523		
p1530[0...n]	Power limit motoring / P_max mot		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 14_5	Unit selection: p0505	Func. diagram: 6640
	Min	Max	Factory setting
	0.00 [kW]	100000.00 [kW]	0.00 [kW]
Description:	Sets the power limit when motoring.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p0500, p1531		
Note:	The power limit is limited to 300% of the rated motor power.		
p1531[0...n]	Power limit regenerative / P_max gen		
	Access level: 2	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 14_5	Unit selection: p0505	Func. diagram: 6640
	Min	Max	Factory setting
	-100000.00 [kW]	-0.01 [kW]	-0.01 [kW]
Description:	Sets the regenerative power limit.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1) Refer to: r0206, p0500, p1530		

r1539	CO: Lower effective torque limit / M_max lower eff		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 6020, 6640
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the actual effective lower torque limit.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	The effective lower torque limit is reduced with respect to the selected lower torque limit p1521, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
	This may be the case for rotating measurements (see p1960).		
	The torque limit p1520 can be re-calculated using p $0340=1,3$ or 5 .		

r1547[0...1]	CO: Torque limit for speed controller output / M_max outp n_ctrl		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Unit group: $7 _1$	Unit selection: p0505	Func. diagram: 6060
	Min	Max	Factory setting
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
Description:	Displays the torque limit to limit the speed controller output.		
Index:	$[0]=$ Upper limit		
	$[1]=$ Lower limit		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		

2.2 List of parameters

p1552[0...n]	CI: Torque limit upper scaling without offset / M_max up w/o offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 6060
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output without taking into account the current and power limits.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1553[0...n]	Stall limit scaling / Stall limit scal		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	80.0 [\%]	130.0 [\%]	100.0 [\%]
Description:	Sets the scaling of the stall limit for the start of field weakening.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 $=2$)		
Danger:	If the stall current limit is increased, then the q current setpoint can exceed the stall limit; as a consequence, a hysteresis effect can occur when loading and unloading.		
p1554[0...n]	CI: Torque limit lower scaling without offset / M_max low w/o offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 6060
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output without taking into account the current and power limits.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1560[0...n]	Moment of inertia estimator accelerating torque threshold value / J_est M thresh		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.10 [\%]	100.00 [\%]	10.00 [\%]
Description:	Sets the threshold for the accelerating torque for the moment of inertia estimator. The moment of inertia estimator is active above this threshold. The value is referred to the rated torque (r0333).		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1400, p1561, p1562		
Note:	The moment of inertia estimation is inaccurate at very low accelerating torques. As a consequence, below this threshold, the estimator does not provide any new values.		

p1561[0...n]	Moment of inertia estimator change time moment of inertia / J_est t J		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10.00 [ms]	5000.00 [ms]	500.00 [ms]
Description:	Sets the change time for the moment of inertia for the moment of inertia estimator. Lower values mean that faster changes are possible. For a higher value, this estimated value is smoothed more significantly.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1400, p1560, p1562		
p1562[0...n]	Moment of inertia estimator change time load / J_est t load		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	5.00 [ms]	5000.00 [ms]	10.00 [ms]
Description:	Sets the change time for the load torque for the moment of inertia estimator.		
	Lower values mean that faster changes are possible.		
	For a higher value, this estimated value is smoothed more significantly.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1400, p1560, p1561		

p1563[0...n]	CO: Mom. of inertia estimator load torque direction of rotation pos. / J_est M pos		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2003	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-340.28235 \mathrm{E} 36[\mathrm{Nm}]$	$0.00[\mathrm{Nm}]$	
Description:	Display and connector output for the monitored load torque in the positive direction of rotation.		
	The moment of inertia estimator estimates the load torque drawn while the speed is constant.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1400, p1560, p1561		

p1564[0...n]	CO: Mom. of inertia estimator load torque direction of rotation neg. / J_est M neg		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2003	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-340.28235 \mathrm{E} 36[\mathrm{Nm}]$	$0.00[\mathrm{Nm}]$	
Description:	Display and connector output for the monitored load torque in the negative direction of rotation.		
	The moment of inertia estimator estimates the load torque drawn while the speed is constant.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1400, p1560, p1561		

p1570[0...n]	CO: Flux setpoint / Flex setp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	50.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the flux setpoint referred to rated motor flux.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	For p1570 $>100 \%$, the flux setpoint increases as a function of the load from 100% (no-load operation) to the setting in p1570 (above rated motor torque), if p1580 > 0\% has been set.		
p1575[0...n]	Voltage target value limit / U_tgt val lim		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6725
	Min	Max	Factory setting
	50.00 [\%]	300.00 [\%]	200.00 [\%]
Description:	Sets the limit of the voltage target value.		
	In steady-state field weakening operation this corresponds to the required output voltage.		
	The value of 100\% refers to p0304.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	The output voltage is only limited if the maximum output voltage (r0071) minus the voltage reserve (p1574) corresponds to a value higher than p1575.		
	Limiting via p1575 allows the influence of the voltage ripple of the line supply voltage to be eliminated at the operating point.		
p1580[0...n]	Efficiency optimization / Efficiency opt.		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	0 [\%]	100 [\%]	0 [\%]
Description:	Sets the efficiency optimization.		
	When optimizing the efficiency, the flux setpoint of the closed-loop control is adapted as a function of the load.		
	For p1580 $=100 \%$, under no-load operating conditions, the flux setpoint is reduced to 50% of the rated motor flux.		
Dependency: Note:			
	It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn , reduce Kp).		
	Further, the smoothing time of the flux setpoint filter (p1582) should be increased.		
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth		
	Access level: 4	Calculated: p0340 $=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6722, 6724
	Min	Max	Factory setting
	4 [ms]	5000 [ms]	15 [ms]
Description:	Sets the smoothing time for the flux setpoint.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		

p1586[0...n]	Field weakening characteristic scaling / Field weak scal		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	80.0 [\%]	120.0 [\%]	100.0 [\%]
Description:	Sets the scaling of the precontrol characteristic for the start of field weakening.		
	For values above 100% and for partial load situations, the field weakening starts at higher speeds.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 = 2)		
Note:	If the start of field weakening is shifted to lower speeds, then the voltage reserve is increased for partial load situations.		
	If the start of field weakening is shifted to higher speeds, the voltage reserve is appropriately reduced so that for fast load changes, it can be expected that this will have a negative impact on the dynamic performance.		

p1590[0...n]	Flux controller P gain / Flux controller Kp		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	0.0	999999.0	10.0
Description:	Sets the proportional gain for the flux controller.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 =2)		
Note:	The value is automatica When calculating contro	ed dependent on the motor w rs (p0340 = 4), this value is r	drive system is first commissioned. ted.

r1598	CO: Total flux setpoint / Flux setp total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6714, 6723, 6724, 6725, 6726
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective flux setpoint.		
	The value is referred to the rated motor flux.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1601[0...n]	Current injection ramp time / I_inject t_ramp		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6790
	Min	Max	Factory setting
	1 [ms]	10000 [ms]	20 [ms]
Description:	Synchronous motor:		
	Sets the ramp-down time of the current setpoint (see p1610, p1611) when switching over from open-loop controll to closed-loop controlled operation.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		

p1610[0...n]	Torque setpoint static (sensorless) / M_set static		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6700, 6721, 6722 6726
	Min	Max	Factory setting
	-200.0 [\%]	200.0 [\%]	50.0 [\%]
Description:	Sets the static torque setpoint for sensorless vector control (SLVC).		
	This parameter is entered as a percentage referred to the rated motor torque.		
	For sensorless vector control, when the motor model is shut down, an absolute current is impressed. p1610 represents the maximum load that occurs at a constant setpoint speed.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Notice:	p1610 should always be set to at least 10% higher than the maximum steady-state load that can occur.		
Note:	For p1610 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case (ASM: rated magnetizing current).		
	For p1610 $=100 \%$, a current setpoint is calculated that corresponds to the rated motor torque.		
	Negative values are converted into positive setpoints in the case of induction and permanent-magnet synchronous motors.		
p1611[0...n]	Additional acceleration torque (sensorless) / M_suppl_accel		
	Access level: 2	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6700, 6721, 6722 6726
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	30.0 [\%]
Description:	Enters the dynamic torque setpoint for the low-speed range for sensorless vector control (SLVC).		
	This parameter is entered as a percentage referred to the rated motor torque.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	When accelerating and braking p1611 is added to p1610 and the resulting total torque is converted into an appropriate current setpoint and controlled.		
	For pure accelerating torques, it is always favorable to use the torque precontrol of the speed controller (p1496)		
r1614	EMF maximum / EMF max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: 5_1	Unit selection: p0505	Func. diagram: 6725
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual maximum possible electromotive force (EMF) of the separately excited synchronous motor.		
Dependency:	The value is the basis for the flux setpoint.		
	The maximum possible EMF depends on the following factors:		
	- Actual DC link voltage (r0070).		
	- Maximum modulation depth (p1803).		
	- Field-generating and torque-generating current setpoint.		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p009 $=2$)		

p1616[0...n]	Current setpoint smoothing time / I_set T_smooth		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6721, 6722
	Min	Max	Factory setting
	4 [ms]	10000 [ms]	40 [ms]
Description:	Sets the smoothing time for the current setpoint.		
	The current setpoint is generated from p1610 and p1611.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	This parameter is only effective in the range where current is injected for sensorless vector control.		
r1624	Field-generating current setpoint total / Id_setp total		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Unit group: 6_2	Unit selection: p0505	Func. diagram: 6640, 6721, 6723, 6727
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the limited field-generating current setpoint (ld_set).		
	This value comprises the steady-state field-generating current setpoint and a dynamic component that is only set when changes are made to the flux setpoint.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1715[0...n]	Current controller P gain / I_ctrl Kp		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6714
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain of the current controller.		
	This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1717[0...n]	Current controller integral-action time / I_ctrl Tn		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 5714, 6700, 6714, 7017
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	2.00 [ms]
Description:	Sets the integral-action time of the current controller.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1715		

p1720[0...n]	Current controller d axis p gain / Id_ctrl Kp		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain of the d-current controller for the lower adaptation current range. This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1722[0...n]	Current controller d axis integral time / I_ctrl d-axis Tn		
	Access level: 4	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	2.00 [ms]
Description:	Sets the integral time of the d-current controller.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1730[0...n]	Isd controller integral component shutdown threshold / Isd ctrl Tn shutd		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	30 [\%]	150 [\%]	30 [\%]
Description:	Sets the speed activation threshold (referred to the synchronous speed) for pure quadrature branch operation of the closed-loop current control.		
	The d current controller is only effective as P controller for speeds greater than the threshold value.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 = 2)		
Warning:	For settings above 80%, the d current controller is active up to the field weakening limit. When operated at the voltage limit, this can result in an unstable behavior.		
Note:	The parameter value is referred to the synchronous rated motor speed.		
r1732[0...1]	CO: Direct-axis voltage setpoint / Direct U set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: 5_1	Unit selection: p0505	Func. diagram: 5700, 5714, 6714, 5718
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	
Description:	Display and connector output for the direct axis voltage setpoint Ud.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		

r1733[0...1]	CO: Quadrature-axis voltage setpoint / Quad U set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Unit group: 5_1	Unit selection: p0505	Func. diagram: 6714, 6731
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connector output for the quadrature axis voltage setpoint Uq. [0] = Unsmoothed		
Index:	[0] = Unsmoothed [1] = Smoothed with p0045		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000	10.000	0.025
Description:	Defines the gain of the controller for resonance damping for operation with sensorless vector control in the range that current is injected.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096-1)		
p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall		
	Access level: 3	Calculated: p0340 $=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [\%]	1000.0 [\%]	5.0 [\%]
Description:	Sets the fault threshold in order to detect a motor that has stalled. If the error signal (r 1746) exceeds the parameterized error threshold, then status signal r1408.12 is set to 1 .		
Dependency:	If a stalled drive is detected (r1408.12 = 1), fault F07902 is output after the delay time. Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	Monitoring is only effective in the low speed range.		
r1746	Motor model error signal stall detection / MotMod sig stall		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Signal to initiate stall detection		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	The signal is not calculated while magnetizing and only calculated in the low speed range.		
p1749[0...n]	Motor model increase changeover speed encoderless operation / Incr n_chng no enc		
	Access level: 4	Calculated: p0340 $=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [\%]	99.0 [\%]	50.0 [\%]
Description:	Minimum operating frequency for rugged operation. If the minimum value is greater than the lower changeover limit parameterized with p1755 * ($1-2$ * p1756), then the difference is displayed using p1749 * p1755. The parameter value cannot be changed.		

2.2 List of parameters

Dependency: \quad Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)

p1750[0...n]	Motor model configuration / MotMod config		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0000000000000000 bin
Description:	Sets the configuration for the motor model.		
	Bit $0=1$: Forces open-loop speed-controlled starting (ASM).		
	Bit $1=1$: Forces the system to pass through frequency zero, open-loop-controlled (ASM).		
	Bit 2 = 1: Drive remains in full closed-loop control mode, even at zero frequency (ASM).		
	Bit 3 = 1: Motor model evaluates the saturation characteristic (ASM).		
	Bit $6=1$: If the motor is blocked, sensorless vector control remains speed-controlled (ASM).		
	Bit 7 = 1: Use rugged switchover limits to switchover the model (open-loop/closed-loop controlled) for regenerative operation (ASM).		

Bit field:

Note:

Bit	Signal name	1 signal	0 signal	FP
00	Controlled start	Yes	No	-
01	Controlled through 0 Hz	Yes	No	-
02	Closed-loop ctrl oper. down to zero freq. for passive loads	Yes	No	-
03	Motor model Lh_pre $=\mathrm{f}$ (PsiEst)	Yes	No	-
06	Closed-loop/open-loop controlled (PMSM) for a blocked motor	Yes	No	-
07	Use rugged changeover limits	Yes	No	-
08	Closed-loop controlled until wait time p1758 has expired	Yes	No	-

Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)
Refer to: p0500
Do not use bit $6=1$ if the motor can be slowly reversed by the load at the torque limit. Long delay times due to blocking (p2177 > p1758) can cause the motor to stall. In this case you should deactivate the function or use closedloop control throughout the speed range (note the information re bit $2=1$).
Bits $0 \ldots 2$ only have an influence for sensorless vector control, bit 2 is pre-assigned depending on p0500.
For bit $2=1$:
The sensorless vector control is effective down to zero frequency. A change is not made into the open-loop speed controlled mode.
This operating mode is possible for passive loads. These include applications where the load itself does not generate any active torque and therefore only acts reactively to the drive torque of the induction motor.
If bit $2=1$, then bit 3 is automatically set to 1 . Manual de-selection is possible and may be sensible if the saturation characteristic (p1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.
When the bit is set, the selection of bits 0 and 1 is ignored.
For bit $2=0$:
Bit 3 is also automatically deactivated.
For bit $6=1$:
The following applies for sensorless vector control of induction motors:
For a blocked motor (see p2175, p2177) the time condition in p1758 is bypassed and a change is not made into open-loop controlled operation.
The following applies for sensorless vector control of synchronous motors:
For a blocked motor (see p2175, p2177), the speed ramp-function generator is held in open-loop speed controlled operation, and a switchover is not made into closed-loop controlled operation.
For bit $7=1$:
The following applies for sensorless vector control of induction motors:
If the changeover limits are parameterized too low (p1755, p1756), then they are automatically increased to rugged values by the absolute amount p1749 * p1755.

The effective time condition for changing over into open-controlled operation is obtained from the minimum value of p1758 and 0.5 * r 0384.
Is recommended that bit 7 is activated for applications that demand a high torque at low frequencies, and at the same time require low speed gradients.
Adequate parameterization of the current setpoint must be ensured (p1610, p1611).
For bit $8=1$: no influence on the functionality of bits $0,1,2$
The following applies for sensorless vector control of induction motors:
Changeover into open-loop speed controlled operation is no longer dependent on the speed setpoint (except for OFF3), but instead is essentially dependent on time condition p1758. As a consequence, a drive can be started or reversed in closed-loop speed controlled operation with setpoints from an external control system, if these briefly lie in the open-loop speed control range.

p1755[0...n]	Motor model changeover speed encoderless operation / MotMod n_chgSnsorl		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the speed to change over the motor model to encoderless operation.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1749, p1756		
Notice:	The changeover speed represents the steady-state minimum speed up to which the motor model can be used in sensorless steady-state operation.		
	If the stability is not adequate close to the changeover speed, it may make sense to increase the parameter value. On the other hand, very low changeover speeds can negatively impact the stability.		
Note:	The changeover speed applies for the changeover between open-loop and closed-loop control mode.		
p1756	Motor model changeover speed hysteresis encoderless operation / MotMod n_chgov hys		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6730, 6731
	Min	Max	Factory setting
	0.0 [\%]	95.0 [\%]	50.0 [\%]
Description:	Sets the hysteresis for the changeover speed of the motor model for encoderless operation.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1755		
Note:	The parameter value refers to p1755.		
	Extremely small hystereses can have a negative impact on the stability in the changeover speed range, and very high hystereses in the standstill range.		
p1764[0...n]	Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6730
	Min	Max	Factory setting
	0.000	100000.000	1000.000
Description:	Sets the proportional gain of the controller for speed adaptation without encoder.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		

p1767[0...n]	Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6730
	Min	Max	Factory setting
	1 [ms]	200 [ms]	4 [ms]
Description:	Sets the integral time of the controller for speed adaptation without encoder		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
p1769[0...n]	Motor model changeover delay time closed-loop control / MotMod t cl_ctrl		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the wait time for a transition from open-loop controlled to closed-loop controlled operation after twice the lower changeover speed p1755 * (1 - p1756 / 100%) has been exceeded - and below the upper switchover speed p1755.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
Note:	With p1759 $=0 \mathrm{~ms}$ and above p1755, the delay time becomes ineffective and the model changeover is determined by the output frequency only (changeover for p1755).		

For bit 12 (only for synchronous motors and bit $6=1$):
The pole position identification is only carried out after power on and after the motor has coasted down. The switchoff speed p1226 should be as low as possible. If the power unit is switched off when the motor is stationary, then the next time that the power unit is switched on, the old angle is used as starting value. The precondition applies that while the power unit is switched off the motor does not rotate.
The duration of the pole position identification is shortened using bit 13. As a consequence, the pole wheel angle error can be slightly greater.

p1784[0...n]	Motor model feedback scaling / MotMod fdbk scal		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [\%]	1000.0 [\%]	0.0 [\%]
Description:	Sets the scaling for model fault feedback.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 = 2)		
Note:	Feeding back the measured model fault to the model states increases the control stability and makes the motor model rugged against parameter errors.		
	When feedback is selected ($\mathrm{p} 1784>0$), Lh adaptation is not effective.		

r1787[0...n]	Motor model Lh adaptation corrective value / MotMod Lh corr		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$

Description: Displays the corrective value for the Lh adaptation of the motor model for an induction motor (ASM).
Dependency: Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1), "Dynamic Drive Control" (DDC, p0096 = 2)
Refer to: p0826, p1780
Note: \quad The adaptation result is reset if the magnetizing inductance of the induction motor is changed (p0360, r0382).

$\mathbf{p 1 8 0 0 [0 . . . n] ~}$	Pulse frequency setpoint / Pulse freq setp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 8021
	Min	Max	Factory setting
	$2.000[\mathrm{kHz}]$	$16.000[\mathrm{kHz}]$	$4.000[\mathrm{kHz}]$

Description: Sets the pulse frequency for the converter.
This parameter is pre-set to the rated converter value when the drive is first commissioned.
Dependency: Refer to: p0230
Note: The maximum and minimum possible pulse frequency is also determined by the power unit being used (minimum pulse frequency: 2 kHz or 4 kHz).
When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067).
If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3$), then the pulse frequency cannot be set below the minimum value required for the filter.
For operation with output reactors, the pulse frequency is limited to 4 kHz (see p0230).
If p1800 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1800 have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).

2.2 List of parameters

r1801[0...1]	CO: Pulse frequency / Pulse frequency		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[\mathrm{kHz}]$	$-[\mathrm{kHz}]$	
Description:	Display and connector output for the actual converter switching frequency.		
Index:	$[0]=$ Actual		
	$[1]=$ Modulator minimum value		
Note:	The selected pulse frequency (p1800) may be reduced if the drive converter has an overload condition (p0290).		

p1802[0...n]	Modulator mode / Modulator mode		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	10	0
Description:	Sets the modulator mode.		
Value:	0: Automatic changeover SVM/FLB		
	2: Space vector modulation (SVM)		
	3: SVM without overcontrol		
	4: SVM/FLB without overcontrol		
	10: SVM/FLB with modulation depth reduction		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only space vector modulation without overcontrol can be selected as modulation type (p1802 = 3).		
	Refer to: p0230, p0500		
Note:	When modulation modes are enabled that could lead to overmodulation ($p 1802=0,2,10$), the modulation depth must be limited using p1803 (default, p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple.		
	When changing p1802[x], the values for all of the other existing indices are also changed.		
p1803[0...n]	Maximum modulation depth / Modulat depth max		
	Access level: 4	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	20.0 [\%]	150.0 [\%]	106.0 [\%]
Description:	Defines the maximum modulation depth.		
Dependency:	Refer to: p0500		
Note:	p1803 $=100 \%$ is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay).		

p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.0[\mathrm{~ms}]$	$10000.0[\mathrm{~ms}]$	$0.0[\mathrm{~ms}]$
Description:	Sets the filter time constant for the DC link voltage.		
	This time constant is used to calculate the modulation depth.		

r1838.0... 15	CO/BO: Gating unit status word 1 / Gating unit ZSW1				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and BICO output for status word 1 of the power unit.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Fault time-critical	ON	OFF	-
	01	Gating unit mode bit 0	ON	OFF	-
	02	Pulse enable	ON	OFF	-
	03	Switch-off signal path STO_B	Inactive	Active	-
	04	Switch-off signal path STO_A	Inactive	Active	-
	05	Gating unit mode bit 1	ON	OFF	-
	06	Gating unit mode bit 2	ON	OFF	-
	07	Brake state	ON	OFF	-
	08	Brake diagnostics	ON	OFF	-
	09	Armature short-circuit braking	Active	Not active	-
	10	Gating unit state bit 0	ON	OFF	-
	11	Gating unit state bit 1	ON	OFF	-
	12	Gating unit state bit 2	ON	OFF	-
	13	Alarm status bit 0	ON	OFF	
	14	Alarm status bit 1	ON	OFF	-
	15	Diagnostics 24 V	ON	OFF	-
p1900	Motor data identification and rotating measurement/ MotID and rot meas				
	Access level: 2		Calculated: -	Data type: Integer16	
	Can be changed: $\mathrm{C}(1), \mathrm{T}$		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: -	
	Min			Factory setting	
	0		12	0	
Description:	Sets the motor data identification and speed controller optimization.				
	The motor identification should first be performed with the motor stationary ($\mathrm{p} 1900=1,2$; also refer to p 1910). Based on this, additional motor and control parameters can be determined using the motor data identification with the motor rotating (p1900 $=1,3$; also refer to p1960; not for p1300<20).				
	p1900 $=0$:				
	Function inhibited.				
	p1900 $=1$:				
	Sets p1910 $=1$ and p1960 $=0,1$ depending on p1300				
	When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next switch-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.				
	With the following switch-on command, a rotating motor data identification routine is carried out - and in addition, a speed controller optimization by making measurements at different motor speeds.				
	$\mathrm{p} 1900=2$:				
	Sets p1910 $=1$ and p1960 $=0$				
	When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next switch-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.				
	p1900 = 3:				
	Sets p1960 $=0,1$ depending on p1300				
	This setting should only be selected if the motor data identification was already carried out at standstill.				
	When the drive enable signals are present, with the next switch-on command, a rotating motor data identification routine is carried out - and in addition, speed controller optimization by taking measurements at different motor speeds.				

Value:	0 :	Inhibited			
	1:	Complete identification (ID) and acceptance	of motor d		
	2 :	Complete identification (ID) of motor data withe	ithout acce		
	20:	Voltage vector input			
	21:	Voltage vector input without filter			
	22:	Rectangular voltage vector input without filte			
	23:	Triangular voltage vector input without filter			
	24:	Rectangular voltage vector input with filter			
	25:	Triangular voltage vector input with filter			
	26:	Enter voltage vector with DTC correction			
	27:	Enter voltage vector with AVC			
	28:	Enter voltage vector with DTC + AVC correc	tion		
Dependency:	"Quick commissioning" must be carried out (p0010 = 1, p3900 > 0) before executing the motor data identification routine!				
	When selecting the motor data identification routine, the drive data set changeover is suppressed. Refer to: p1900				
	Refer to: F07990, A07991				
Notice:	After the motor data identification ($\mathrm{p} 1910>0$) has been selected, alarm A07991 is output and a motor data identification routine is carried out as follows at the next switch-on command:				
	- current flows through the motor and a voltage is present at the drive converter output terminals.				
	- during the identification routine, the motor shaft can rotate through a maximum of half a revolution. - however, no torque torque is generated.				
Note:	If there is a motor holding brake, it must be open (p1215 = 2).				
	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).				
	When setting p1910, the following should be observed:				
	1. "With acceptance" means:				
	The parameters specified in the description are overwritten with the identified values and therefore have an influence on the controller setting.				
	2. "Without acceptance" means:				
	The identified parameters are only displayed in the range r1912 ... r1926 (service parameters). The controller settings remain unchanged.				
	3. For settings 27 and 28, the AVC configuration set using p1840 is active.				
	The switch-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it. The duration of the measurements can lie between 0.3 s and several minutes. This time is mainly influenced by the motor size. At the end of the motor data identification, p1910 is automatically set to if only the stationary measurement is selected, then p1900 is also reset to 0 , otherwise, the rotating measurement activated.				
p1959[0...n]	Rotating measurement configuration / Rot meas config				
	Access level: 3	ss level: 3 Calculated:	p0340 = 1	Data type: U	
	Can be changed: T			Dyn. index:	
	Unit group: -		n: -	Func. diagra	
	Min			Factory sett	
	-			0000000000	
Description:	Sets the configuration of the rotating measurement.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	01	Saturation characteristic identification	Yes	No	-
	02	Moment of inertia identification	Yes	No	-
	03	Re-calculates the speed controller parameters	Yes	No	-
	04	Speed controller optimization (vibration test)	Yes	No	-
	11	Do not change the controller parameters during the measurement	Yes	No	-
	12	Measurement shortened	Yes	No	-
	13	After measurement direct transition into operation	Yes	No	-
Dependency:	Refe	to: F07988			

2.2 List of parameters

Note: \quad The following parameters are influenced for the individual optimization steps: \quad Bit 01: p0320, p0360, p0362 ...p0369 \quad Bit 02: p0341, p0342 \quad Bit 03: p1470, p1472, p1496 \quad Bit 04: Dependent on p1960 \quad p1960 $=1,3: p 1400, p 1470, p 1472, p 1496$

For bit $12=1$:
The selection only has an effect on the measurement p1960 = 1, 2. For the shortened measurement, the magnetizing current and moment of inertia are determined with a somewhat lower accuracy.
For bit $13=1$:
After the measurement has been completed, the system immediately goes into closed-loop speed controlled operation.

p1960	Rotating measurement selection / Rot meas sel		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	0
Description:	Sets the rotating measurement.		
	The rotating measurement is carried out after the next switch-on command.		
	The setting possibilities of the parameter depend on the open-loop/closed-loop control mode (p1300). p1300 < 20 (U/f open-loop control):		
	It is not possible to select rotating measurement or speed controller optimization.		
	Only rotating measurement or speed controller optimization can be selected in the encoderless mode.		
Value:	0: Inhibited		
	1: Rotating measurement in encoderless operation		
	3: Speed controller optimization in encoderless operation		
Dependency:	Before the rotating measurement is carried out, the motor data identification routine ($\mathrm{p} 1900, \mathrm{p} 1910, \mathrm{r} 3925$) should have already been done.		
	When selecting the rotating measurement, the drive data set changeover is suppressed.		
	Refer to: p1300, p1900, p1959, p1967, r1968		
Danger:	For drives with a mechanical system that limits the distance moved, it must be ensured that this is not reached during		
1	the rotating measurement. If this is not the case, then it is not permissible that the measurement is carried out.		
Notice:	If there is a motor holding brake, it must be open (p1215 = 2).		
	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).		
	During the rotating measurement it is not possible to save the parameter (p0971).		
Note:	When the rotating measurement is activated, it is not possible to save the parameters (p0971).		
	Parameter changes are automatically made for the rotating measurement (e.g. p1120); this is the reason that up to the end of the measurement, and if no faults are present, no manual changes should be made.		

p1961	Saturation characteristic speed to determine / Sat_char \mathbf{n} determ		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$26[\%]$	$40[\%]$	
Description:	Sets the speed to determine the saturation characteristic.		
	The percentage value is referred to p0310 (rated motor frequency).		
Dependency:	Refer to: p0310, p1959		
	Refer to: F07983		
Note:	The saturation characteristics should be determined at an operating point with the lowest possible load.		

p1965	Speed_ctrl_opt speed / n_opt speed		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10 [\%]	75 [\%]	40 [\%]
Description:	Sets the speed for the identification of the moment of inertia and the vibration test.		
	Induction motor:		
	The percentage value is referred to p0310 (rated motor frequency).		
	Synchronous motor:		
	The percentage value is referred to the minimum from p0310 (rated motor frequency) and p1082 (maximum speed).		
Dependency:	Refer to: p0310, p1959		
	Refer to: F07984, F07985		
Note:	In order to calculate the inertia, sudden speed changes are carried out - the specified value corresponds to the lower speed setpoint. This value is increased by 20% for the upper speed value.		
	The q leakage inductance (refer to p 1959.5) is determined at zero speed and at 50% of p 1965 - however, with a maximum output frequency of 15 Hz and at a minimum of 10% of the rated motor speed.		
p1967	Speed_ctrl_opt dynamic factor / n_opt dyn_factor		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1 [\%]	400 [\%]	100 [\%]
Description:	Sets the dynamic response factor for speed controller optimization.		
	After optimization, the dynamic response achieved is displayed in r1968.		
Dependency:	Refer to: p1959, r1968		
	Refer to: F07985		
Note:	For a rotating measurement, this parameter can be used to optimize the speed controller. p1967 $=100 \%$--> speed controller optimization according to a symmetric optimum. p1967 > 100 \% --> optimization with a higher dynamic response (Kp higher, Tn lower).		
	If the actual dynamic response (see $\mathbf{r 1 9 6 8}$) is significantly reduced with respect to the required dynamic response (p 1967), then this can be as a result of mechanical load oscillations. If, in spite of this load behavior, a higher dynamic response is required, then the oscillation test ($\mathrm{p} 1959.4=0$) should be deactivated and the measurement repeated.		

r1968	Speed_ctrl_opt dynamic factor actual / n_opt dyn_fact act		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the dynamic factor which is actually achieved for the vibration test		
Dependency:	Refer to: p1959, p1967		
	Refer to: F07985		
Note:	This dynamic factor only refers to the control mode of the speed controller set in p1960.		

2.2 List of parameters

p1980[0...n]	Polld technique / Polld technique		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	10	4
Description:	Sets the pole position identification technique.		
	$\mathrm{p} 1980=1,8$: The current magnitude is set using p0329.		
	$\mathrm{p} 1980=4,6$: The current magnitude of the first measurement section is set using p0325, the second using p0329.		
	p1980 $=10$: The rated motor current is impressed to align.		
	The current magnitudes are limited to the rated power unit values.		
Value:	1: Voltage pulsing 1st harmonics		
	4: Voltage pulsing 2-stage		
	6: Voltage pulsing 2-stage inverse		
	8: Voltage pulsing 2nd harmonic, inverse		
	10: DC current injection		
Dependency:	When commissioning a catalog motor, the technique is automatically selected depending on the motor type being used.		
	Refer to: p0325, p0329, p1780		
	Refer to: F07969		
Note:	Voltage pulse technique	4) cannot be applied to ope	sine-wave output filters (p0230).

r1992.0.. 15	CO/BO: PollD diagnostics / PollD diag				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-				
Description:	Display and BICO output for the diagnostics information of the pole position identification (polID)				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Critical encoder fault occurred	Yes	No	-
		Encoder parking active	Yes	No	-
	05	Encoder fault Class 1	Yes	No	-
	06	Encoder fault Class 2	Yes	No	-
	07	Pole position identification for encoder carried out	Yes	No	-
		Fine synchronization carried out	Yes	No	-
		Coarse synchronization carried out	Yes	No	-
		Commutation information available	Yes	No	-
		Speed information available	Yes	No	-
		Position information available	Yes	No	-
		Zero mark passed	Yes	No	-
Dependency:	Refer to: p0325, p0329, p1980				
Note:	The data of p1992 are updated in a 4 ms cycle.				
	Fast changes of the encoder status word bits can be better investigated using p7830 and following.				

p2000	Reference speed reference frequency / n_ref f_ref
	Access level: $2 \quad$ Calculated: $\mathrm{p} 0340=1 \quad$ Data type: FloatingPoint32
	Can be changed: T Scaling: - Dyn. index: -
	Unit group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	6.00 [rpm] 210000.00 [rpm] 1500.00 [rpm]
Description:	Sets the reference quantity for speed and frequency.
	All speeds or frequencies specified as relative value are referred to this reference quantity.
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).
	The following applies: Reference frequency (in Hz) = reference speed (in (rpm) / 60) x pole pair number)
Dependency:	This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 $=1$.
	Refer to: p2001, p2002, p2003, r2004, r3996
Notice:	When the reference speed / reference frequency is changed, short-term communication interruptions may occur.
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
	Example 1:
	The signal of an analog input (e.g. r0755[0]) is connected to a speed setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p 2000).
	Example 2:
	The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000).
p2001	Reference voltage / Reference voltage
	Access level: $3 \quad$ Calculated: $\mathrm{p} 0340=1 \quad$ Data type: FloatingPoint32
	Can be changed: T Scaling: - Dyn. index: -
	Unit group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	10 [Vrms] 100000 [Vrms] 1000 [Vrms]
Description:	Sets the reference quantity for voltages.
	All voltages specified as relative value are referred to this reference quantity. This also applies for direct voltage values ($=$ rms value) like the DC link voltage.
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).
	This reference quantity also applies to direct voltage values. It is not interpreted as rms value, but as DC voltage value.
Dependency:	p2001 is only updated during automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning has been carried out first for drive data set zero and as a result overwriting of the parameter has not been blocked by setting p0573 = 1.
	Refer to: r3996
Notice:	When the reference voltage is changed, short-term communication interruptions may occur.
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
	For infeed units, the parameterized device supply voltage (p 0210) is pre-assigned as the reference quantity. Example:
	The actual value of the DC link voltage (r0070) is connected to a test socket (e.g. p0771[0]). The actual voltage value is cyclically converted into a percentage of the reference voltage (p2001) and output according to the parameterized scaling.

p2002	Reference current / I_ref		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.10 [Arms]	100000.00 [Arms]	100.00 [Arms]
Description:	Sets the reference quantity for currents.		
	All currents specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 $=1$.		
	Refer to: r3996		
Notice:	If various DDS are used with different motor data, then the reference quantities remain the same as these are not changed over with the DDS. The resulting conversion factor must be taken into account.		
	Example:		
	p2002 $=100 \mathrm{~A}$		
	Reference quantity 100 A corresponds to 100%		
	p0305[0] $=100 \mathrm{~A}$		
	Rated motor current 100 A for MDS0 in DDS0 --> 100% corresponds to 100% of the rated motor current p0305[1] = 50 A		
	Rated motor current 50 A for MDS1 in DDS1 --> 100% corresponds to 200% of the rated motor current		
	When the reference current is changed, short-term communication interruptions may occur.		
Note:	Pre-assigned value is p0640.		
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	For infeed units, the rated line current, which is obtained from the rated power and parameterized rated line supply voltage (p2002 $=$ r0206 / p0210 / 1.73) is pre-assigned as the reference quantity.		
	Example:		
	The actual value of a phase current (r0069[0]) is connected to a test socket (e.g. p0771[0]). The actual current value is cyclically converted into a percentage of the reference current (p2002) and output according to the parameterized scaling.		
p2003	Reference torque / M_ref		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: 7_2	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.01 [Nm]	20000000.00 [Nm]	1.00 [Nm]
Description:	Sets the reference quantity for torque.		
	All torques specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 = 1 .		
	Refer to: r3996		
Notice:	When the reference torque is cha	d, short-term communication	ons may occur.
Note:	Preassigned value is 2 * 00333 .		
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	Example:		
	The actual value of the total torque (r0079) is connected to a test socket (e.g. p0771[0]). The actual torque is cyclically converted into a percentage of the reference torque (p 2003) and output according to the parameterized scaling.		

r2004	Reference power / P_ref		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: 14_10	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the reference quantity for power.		
	All power ratings specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	This value is calculated as follows:		
	Infeed: Calculated from voltage times current.		
	Closed-loop control: Calculated from torque times speed.		
	Refer to: p2000, p2001, p2002, p2003		
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	The reference power is calculated as follows:		
	-2 * Pi * reference speed/ 60 * reference torque (motor)		
	- reference voltage * reference current * root(3) (infeed)		

p2006	Reference temperature / Ref temp		
	Access level: 3	Calculated: p0340 $=1$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: $21 _1$	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
Description:	$50.00\left[{ }^{\circ} \mathrm{C}\right]$	$300.00\left[{ }^{\circ} \mathrm{C}\right]$	$100.00\left[{ }^{\circ} \mathrm{C}\right]$
	Sets the reference quantity for temperature.		
	All temperatures specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		

p2010	Comm IF baud rate / Comm baud		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	6	12	12
Description:	Sets the baud rate for the commissioning interface (USS, RS232).		
Value:	6: 9600 baud		
	7: 19200 baud		
	8: 38400 baud		
	$\begin{array}{ll} 9: & 57600 \text { baud } \\ \text { 10: } & 76800 \text { baud } \end{array}$		
	11: 93750 baud 12: 115200 baud		
Note:	COMM-IF: Commissioning interface		
	The parameter is not influenced by setting the factory setting.		

2.2 List of parameters

p2011	Comm IF address / Comm add		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	31	2
Description:	Sets the address for the commissioning interface (USS, RS232).		
Note:	The parameter is not influenced by setting the factory setting.		
p2016[0...3]	CI: Comm IF USS PZD send word / Comm USS send word		
	Access level: 3	Calculated: -	Data type: U32 / Integer16
	Can be changed: U, T	Scaling: 4000H	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) to be sent via the commissioning interface USS. The actual values are displayed on an intelligent operator panel (IOP).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] $=$ PZD 4		
p2020	Field bus interface baud rate / Field bus baud		
G120C_USS	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	4	13	8
Description: Value:	Sets the baud rate for the field bus interface (RS485).		
	4: 2400 baud		
	5: 4800 baud		
	6: 9600 baud		
	7: 19200 baud		
	8: 38400 baud		
	9: $\quad 57600$ baud		
	10: 76800 baud		
	11: 93750 baud		
	12: 115200 baud		
Note:	Fieldbus IF: Fieldbus interface		
	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	The parameter is set to the factory setting when the protocol is reselected.		
	When p2030 $=1$ (USS), the following applies:		
	Min./max./factory setting: 4/13/8		
	When p2030 $=2$ (Modbus), the following applies:		
	Min./max./factory setting: 5/13/7		

p2021	Field bus interface address / Field bus address		
G120C_USS	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	0	247	0
Description:	Displays or sets the address for the fieldbus interface (RS485).		
	The address can be set as follows:		
	1) Using the address switch on the Control Unit.		
	--> p2021 displays the address setting.		
	--> A change only becomes effective after a POWER ON.		
	2) Using p2021		
	--> Only if an address of 0 or an address that is invalid for the fieldbus selected in p2030 has been set using the address switch.		
	--> The address is saved in a non-volatile fashion using the function "copy from RAM to ROM".		
	--> A change only becomes effective after a POWER ON.		
Dependency:	Refer to: p2030		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	The parameter is set to the factory setting when the protocol is reselected.		
	When p2030 $=1$ (USS), the following applies:		
	Min./max./factory setting: 0/30/0		
	When p2030 = 2 (Modbus), the following applies:		
	Min./max./factory setting: 1/247/1		
p2022	Field bus int USS PZD no. / Field bus USS PZD		
G120C_USS	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	0	8	2
Description:	Sets the number of 16-bit words in the PZD part of the USS telegram for the field bus interface.		
Dependency:	Refer to: p2030		
Note:	The parameter is not influenced by setting the factory setting.		
p2023	Field bus interface USS PKW count / Field bus USS PKW		
G120C_USS	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	0	127	127
Description:	Sets the number of 16-bit words in the PKW part of the USS telegram for the field bus interface.		
Value:	0: PKW 0 words		
	3: PKW 3 words		
	4: PKW 4 words		
	127: PKW variable		
Dependency:	Refer to: p2030		
Note:	The parameter is not influenced by setting the factory setting.		

2.2 List of parameters

p2024[0...2]	Fieldbus interface times / Fieldbus times		
G120C_USS	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	[0] 1000 [ms]
			[1] 0 [ms]
			[2] 0 [ms]
Description:	Sets the time values for the fieldbus interface.		
	For Modbus the following applies: p2024[0, 1]: Not relevant.		
	p2024[2]: Telegram pause time (pause time between two telegrams).		
Index:	$\begin{aligned} & {[0]=\text { Max. processing time }} \\ & {[1]=\text { Character delay time }} \\ & {[2]=\text { Telegram pause time }} \end{aligned}$		
Dependency:	Refer to: p2020, p2030		
Note:	For p2024[2] (Modbus):		
	If the field bus baud rate is changed (p2020), the default time setting is restored.		
	The default setting corresponds to a time of 3.5 characters (dependent on the baud rate that has been s		

r2029[0...7]	Field bus interface error statistics / Field bus error		
G120C_USS	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	-	-	-
Description:	Displays the receive errors on the field bus interface (RS485).		
Index:	[0] = Number of error [1] = Number of rejec [2] = Number of frami [3] = Number of overr [4] = Number of parity [5] = Number of starting [6] = Number of chec [7] = Number of lengt		
p2030	Field bus interface protocol selection / Field bus protocol		
G120C_CAN	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	0	4	4
Description:	Sets the communication protocol for the field bus interface.		
Value:	0: No protocol		
Note:	Changes only become effective after POWER ON.		

| p2030 | Field bus interface protocol selection / Field bus protocol | |
| :--- | :--- | :--- | :--- |
| G120C_DP | Calculated: - | Data type: Integer16 |

2.2 List of parameters

r2032	Master control control word effective / PcCtrl STW eff				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-			-	
Description:	Displays the effective control word 1 (STW1) of the drive for the master control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	-
	01	OC / OFF2	Yes	No	-
	02	OC / OFF3	Yes	No	-
	03	Enable operation	Yes	No	-
	04	Enable ramp-function generator	Yes	No	-
	05	Start ramp-function generator	Yes	No	-
	06	Enable speed setpoint	Yes	No	-
	07	Acknowledge fault	Yes	No	-
	08	Jog bit 0	Yes	No	3030
		Jog bit 1	Yes	No	3030
	10	Master control by PLC	Yes	No	-
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control word/setpoints can be transferred from another automation device.				
Note:	OC: Operating condition				
p2037	PROFIdrive STW1.10 = 0 mode / PD STW1.10=0				
G120C_DP	Access level: 3		Calculated: -	Data type: Integer16	
G120C_PN	Can be changed: T		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	0		2	0	
Description:	Sets the processing mode for PROFIdrive STW1.10 "master control by PLC".				
	Generally, control world 1 is received with the first receive word (PZD1) (this is in conformance to the PROFIdrive profile). The behavior of STW1.10 $=0$ corresponds to that of the PROFIdrive profile. For other applications that deviate from this, the behavior can be adapted using this particular parameter.				
Value:	```0: Freeze setpoints and continue to process sign-of-life Freeze setpoints and sign-of-life Do not freeze setpoints```				
Recommendation:	Do not change the setting p2037 $=0$.				
Note:	If the STW1 is not transferred according to the PROFIdrive with PZD1 (with bit 10 "master control by PLC"), then p2037 should be set to 2 .				
p2038	PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode				
G120C_DP	Access level: 3		Calculated: -	Data type: Integer16	
G120C_PN	Can be changed: T		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: -	
	Min			Factory setting	
	0		2	0	
Description:	Sets the interface mode of the PROFIdrive control words and status words.				
	When selecting a telegram via p0922 (p2079), this parameter influences the device-specific assignment of the bits in the control and status words.				
Value:	0 : SINAMICS 2: VIK-NAMUR				
Dependency:	Refer to: p0922, p2079				
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.				
Note:	- For p0922 (p2079) $=1,350 \ldots 999, \mathrm{p} 2038$ is automatically set to 0 .				
	- For p0922 (p2079) $=20, \mathrm{p} 2038$ is automatically set to 2 .				
	It is not then possible to change p2038.				

p2039	Select debug monitor interface / Debug monit select			
	Access level: 4	Calculated: -	Data type: U	
	Can be changed: U, T	Scaling: -	Dyn. index:	
	Unit group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory sett	
	0	3	0	
Description:	The serial interface for the debug monitor is COM1 (commissioning interface, RS232) or COM2 (fieldbus interface, RS485).			
	Value $=0$: Deactivated			
	Value $=1$: COM1, commissioning protocol is deactivated			
	Value $=2$: COM2, field bus is deactivated			
	Value $=3$: Reserved			
Note:	Value $=2$ is only possible for Control Units with RS485 as a field bus interface.			
p2040	Fieldbus interface monitoring time / Fieldbus t_monit			
G120C_USS	Access level: 3	Calculated: -	Data type:	
G120C_CAN	Can be changed: U, T	Scaling: -	Dyn. index:	
	Unit group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory sett	
	0 [ms]	1999999 [ms]	100 [ms]	
Description:	Sets the monitoring time to monitor the process data received via the fieldbus interface. If no process data is received within this time, then an appropriate message is output.			
Dependency: Note:	Refer to: F01910			
	p2040 $=0$:			
	Monitoring is deactivated.			
p2042	PROFIBUS Ident Number / PB ident No.			
G120C_DP	Access level: 3	Calculated: -	Data type: In	
	Can be changed: T	Scaling: -	Dyn. index:	
	Unit group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory sett	
	0	1	0	
Description:	Sets the PROFIBUS ident number (PNO-ID).			
	SINAMICS can be operated with various identities on PROFIBUS. This allows the use of a PROFIBUS GSD that is independent of the device (e.g. PROFIdrive VIK-NAMUR with ident number 3AAO hex).			
Value:	0: \quad SINAMICS 1: VIK-NAMUR			
Note:	Every change only becomes effective after a POWER ON.			
r2043.0... 2	BO: PROFIdrive PZD state / PD PZD state			
G120C_DP	Access level: 3	Calculated: -	Data type: U	
G120C_PN	Can be changed: -	Scaling: -	Dyn. index:	
	Unit group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory sett	
	-	-	-	
Description:	Displays the PROFIdrive PZD state.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Setpoint failure	Yes	No	-
	02 Fieldbus operation	Yes	No	-
Dependency:	Refer to: p2044			
Note:	When using the "setpoint failure" signal, the bus can be monitored and an application-specific response triggered when the setpoint fails.			

2.2 List of parameters

p2044	PROFIdrive fault delay / PD fault delay		
G120C_DP	Access level: 3	Calculated: -	Data type: FloatingPoint32
G120C_PN	Can be changed: U, T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 2410
	Min	Max	Factory setting
	0 [s]	100 [s]	0 [s]
Description:	Sets the delay time to initiate fault F01910 after a setpoint failure.		
	The time until the fault is initiated can be used by the application. This means that is is possible to respond to the failure while the drive is still operational (e.g. emergency retraction).		
Dependency:	Refer to: r2043		
	Refer to: F01910		
p2047	PROFIBUS additional monitoring time / PB suppl t_monit		
G120C_DP	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2410
	Min	Max	Factory setting
	0 [ms]	20000 [ms]	0 [ms]
Description:	Sets the additional monitoring time to monitor the process data received via PROFIBUS. Enables short bus faults to be compensated. If no process data is received within this time, then an appropriate message is output.		
Dependency:	Refer to: F01910		
Note:	For controller STOP, the additional monitoring time is not effective.		
r2050[0...11]	CO: PROFIBUS PZD receive word / PZD recv word		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: 4000H	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2440, 2468, 9360
	Min	Max	Factory setting
	-	-	-
Index:	Connector output to interconnect PZD (setpoints) with word format received from the fieldbus controller. [0] = PZD 1		
	$\text { [0] = PZD } 1$		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11$[11]=$ PZD 12		
Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types. A BICO interconnection for a single PZD can only take place either on r2050 or r2060.		

p2051[0...16]	CI: PROFIdrive PZD send word / PZD send word		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Integer16
G120C_PN	Can be changed: U, T	Scaling: 4000 H	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2450, 2470, 9370
	Min	Max	Factory setting
	-	-	[0] 2089[0]
			[1] 63[0]
			[2...16] 0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	[2] $=$ PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16[16] $=$ PZD 17		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2051[0...16]	CI: PROFIdrive PZD send word / PZD send word		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Integer16
G120C_CAN	Can be changed: U, T	Scaling: 4000H	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2450, 2470, 9370
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

2.2 List of parameters

r2053[0...16]	PROFIdrive diagnostics send PZD word / Diag send word				
	Acc	ess level: 3	Calculated: -	Data type: U	
	Can	be changed: -	Scaling: -	Dyn. index:	
	Uni	group: -	Unit selection: -	Func. diagra	
	Min		Max	Factory setti	
	-		-	-	
Description: Index:	Displays the PZD (actual values) with word format sent to the fieldbus controller.				
	[0] = PZD 1				
	[1] = PZD 2				
	[2] = PZD 3				
	[3] = PZD 4				
	[4] = PZD 5				
	[5] = PZD 6				
	[6] = PZD 7				
	[7] = PZD 8				
	[8] = PZD 9				
	[9] = PZD 10				
	[10] = PZD 11				
	[11] = PZD 12				
	[12] = PZD 13				
	[13] = PZD 14				
	[14] = PZD 15				
	[15] = PZD 16				
	[16] = PZD 17				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
		Bit 15	ON	OFF	-
r2054	PROFIBUS status / PB status				
G120C_DP	Access level: 3		Calculated: -	Data type: Integer16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: 2410	
	Min		Max	Factory setting	
	0		4	-	
Description:	Status display for the PROFIBUS interface.				
Value:	0: OFF				
	1: No connectio		ud rate)		
	2: Connection				
	3:	Cyclic connection with master (data exchange)Cyclic data OK			

2.2 List of parameters

	[4] $=$ PZD $5+6$
	[5] = PZD $6+7$
	[6] = PZD $7+8$
	[7] = PZD $8+9$
	[8] = PZD $9+10$
	[9] P PZD $10+11$
	[10] = PZD $11+12$
	$[11]=$ PZD 12 + 13
	[12] = PZD 13 + 14
	[13] = PZD $14+15$
	[14] = PZD $15+16$
	[15] = PZD 16 + 17
Dependency:	Refer to: p2051
Notice:	A BICO interconnection for a single PZD can only take place either on p2051 or p2061.
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

r2063[0...15]	PROFIdrive diagnostics PZD send double word / Diag send DW				
	Acc	ss level: 3	Calculated: -	Data type: Unsigned32	
	Can	be changed: -	Scaling: -	Dyn. index: -	
	Unit	group: -	Unit selection: -	Func. diagram: 2470	
	Min		Max	Factory setting	
	-		-	-	
Description: Index:	Displays the PZD (actual values) with double word format sent to the fieldbus controller.				
	[0] = PZD $1+2$				
	[1] = PZD $2+3$				
	[2] $=$ PZD $3+4$				
	[3] = PZD $4+5$				
	[4] $=$ PZD $5+6$				
	[5] = PZD 6 + 7				
	$[6]=$ PZD $7+8$				
	$[7]=$ PZD $8+9$				
	[8] = PZD $9+10$				
	[9] P PZD $10+11$				
	[10] = PZD 11 + 12				
	[11] P PZD $12+13$				
	[12] P PZD 13 + 14				
	[13] = PZD $14+15$				
	[14] = PZD 15 + 16				
	[15] = PZD 16 + 17				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-

2.2 List of parameters

r2075[0...11]	PROFIdrive diagnostics telegram offset PZD receive / Diag offs recv
G120C_DP	Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Func. diagram: 2410 Min Max Factory setting - - -
Description: Index:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output). $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & {[10]=\text { PZD } 11} \\ & {[11]=\text { PZD } 12} \end{aligned}$
Note:	Value range: 0-242: Byte offset 65535: Not assigned
r2076[0...16]	PROFIdrive diagnostics telegram offset PZD send / Diag offs send
G120C_DP	Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Unit group: - Unit selection: - Func. diagram: 2410 Min Max Factory setting - - -
Description: Index:	Displays the PZD byte offset in the PROFIdrive send telegram (controller input). $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & {[10]=\text { PZD } 11} \\ & {[11]=\text { PZD } 12} \\ & {[12]=\text { PZD } 13} \\ & {[13]=\text { PZD } 14} \\ & {[14]=\text { PZD } 15} \\ & {[15]=\text { PZD } 16} \\ & {[16]=\text { PZD } 17} \end{aligned}$
Note:	Value range: 0-242: Byte offset 65535: Not assigned

2.2 List of parameters

p2080[0...15]	BI: Binector-connector converter status word 1 / Bin/con ZSW1		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	[0] 899.0
			[1] 899.1
			[2] 899.2
			[3] 2139.3
			[4] 899.4
			[5] 899.5
			[6] 899.6
			[7] 2139.7
			[8] 2197.7
			[9] 899.9
			[10] 2199.1
			[11] 1407.7
			[12] 899.12
			[13] 2135.14
			[14] 2197.3
			[15] 2135.15
Description:	Selects bits to be sent to the PROFIdrive controller. The individual bits are combined to form status word 1		
Index:	[0] $=$ Bit 0		
	[2] $=$ Bit 2		
	[3] $=$ Bit 3		
	[4] $=$ Bit 4		
	[5] $=$ Bit 5		
	[6] $=$ Bit 6		
	$[7]=$ Bit 7		
	[8] $=$ Bit 8		
	[9] $=$ Bit 9		
	[10] = Bit 10		
	[11] $=$ Bit 11		
	$[12]=$ Bit 12$[13]=$ Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:	Refer to: p2088, r2089		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2080[0...15]	BI: Binector-conn	verter status w	ZSW1
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: U, T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are comer	form status word 1.	
Index:	[0] = Bit 0		
	[1] $=$ Bit 1		
	[2] $=$ Bit 2		
	[3] $=$ Bit 3		
	[4] $=$ Bit 4		
	$[5]=$ Bit 5$[6]=$ Bit 6		

	$[7]$ $[8]$ $[9]$ $[10]$ $[11]$ $[12]$ $[13]$ $[14]$ $[15]$	Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15			
Dependency:	Refer to: p2088, r2089				
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.				
p2088[0...4]	Invert binector-connector converter status word / Bin/con ZSW inv				
G120C_DP		ss level: 3	Calculated: -	Data type: Unsig	
G120C_PN		be changed: U, T	Scaling: -	Dyn. index: -	
		group: -	Unit selection: -	Func. diagram:	
	Min		Max	Factory setting	
	-		-	[0] 10101000000 [1...4] 00000000	
Description: Index:	Set $[0]$ $[1 . .$.	g to invert the individ Status word 1 = Reserved	inputs of the binector-c	verter.	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
	14	Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	Refer to: p2080, r2089				
p2088[0...4]	Invert binector-connector converter status word / Bin/con ZSW inv				
G120C_USS	Access level: 3		Calculated: -	Data type: Unsigned16	
G120C_CAN	Can be changed: U, T		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram:	
	Min		Max	Factory setting	
	-		-	000000000000	
Description: Index:	Set $[0]$ $[1 . .$.	g to invert the indivi Status word 1 = Reserved	inputs of the binector-c	verter.	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-

2.2 List of parameters

	08	Bit 8	Inverted	Not inverted
09	Bit 9	Inverted	Not inverted	
10	Bit 10	Inverted	Not inverted	
11	Bit 11	Inverted	Not inverted	
12	Bit 12	Inverted	Not inverted	
	13	Bit 13	Inverted	Not inverted
	14	Bit 14	Inverted	Not inverted
Dependency:	15	Bit 15	Inverted	Not inverted
	Refer to: p2080, r2089			

r2090.0... 15	BO: PROFldrive PZD1 receive bit-serial / PZD1 recv bitw				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: 2468, 9204, 9206, 9360	
	Min		Max	Factory sett	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD1 (normally control word 1) received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-

	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
r2091.0... 15	BO: PROFldrive PZD2 receive bit-serial / PZD2 recv bitw				
G120C_CAN	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: 2468, 9204, 9206	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD2 received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-

r2091.0... 15	BO: PROFldrive PZD2 receive bit-serial / PZD2 recv bitw				
G120C_USS	Access level: 3		Calculated: -	Data type: Unsigned16	
G120C_DP	Can be changed: -		Scaling: -	Dyn. index: -	
G120C_PN	Unit group: -		Unit selection: -	Func. diagram: 2468	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD2 received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-

2.2 List of parameters

r2092.0... 15	BO: PROFldrive PZD3 receive bit-serial / PZD3 recv bitw			
G120C_CAN	Access level: 3		Calculated: -	Data type: Unsigned16
	Can be changed: -		Scaling: -	Dyn. index: -
	Unit group: -		Unit selection: -	Func. diagram: 2468, 9204, 9206
	Min		Max	Factory setting
	-		-	-
Description:	Binector output for bit-serial interconnection of PZD3 received from the PROFldrive controller.			
Bit field:	Bit	Signal name	1 signal	0 signal FP
	00	Bit 0	ON	OFF
	01	Bit 1	ON	OFF
	02	Bit 2	ON	OFF
	03	Bit 3	ON	OFF
	04	Bit 4	ON	OFF
	05	Bit 5	ON	OFF
	06	Bit 6	ON	OFF
	07	Bit 7	ON	OFF
	08	Bit 8	ON	OFF
	09	Bit 9	ON	OFF
	10	Bit 10	ON	OFF
	11	Bit 11	ON	OFF
	12	Bit 12	ON	OFF
	13	Bit 13	ON	OFF
	14	Bit 14	ON	OFF
	15	Bit 15	ON	OFF -

r2092.0... 15	BO: PROFldrive PZD3 receive bit-serial / PZD3 recv bitw				
G120C_USS	Access level: 3		Calculated: -	Data type: Unsigned16	
G120C_DP	Can be changed: -		Scaling: -	Dyn. index: -	
G120C_PN	Unit group: -		Unit selection: -	Func. diagram: 2468	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD3 received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-

r2093.0... 15	BO: PROFldrive PZD4 receive bit-serial / PZD4 recv bitw				
G120C_CAN	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: 2468, 9204, 9206	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received from the PROFIdrive controller.				
Bit field:		Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
r2093.0... 15	BO: PROFldrive PZD4 receive bit-serial / PZD4 recv bitw				
G120C_USS	Access level: 3		Calculated: -	Data type: Unsigned16	
G120C_DP	Can be changed: -		Scaling: -	Dyn. index: -	
G120C_PN	Unit group: -		Unit selection: -	Func. diagram: 2468	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-

2.2 List of parameters

r2094.0... 15	BO: Connector-binector converter binector output / Con/bin outp		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2468, 9360
	Min	Max	Factory setting
	-	-	-
Description:	Binector output for bit-serial onward interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[0].		
Bit field:	Bit Signal name	1 signal	0 signal \quad FP
	00 Bit 0	ON	OFF
	01 Bit 1	ON	OFF
	02 Bit 2	ON	OFF
	03 Bit 3	ON	OFF
	04 Bit 4	ON	OFF -
	05 Bit 5	ON	OFF -
	06 Bit 6	ON	OFF -
	$07 \quad \text { Bit } 7$	ON	OFF -
	08 Bit 8	ON	OFF -
	09 Bit 9	ON	OFF -
	10 Bit 10	ON	OFF -
	11 Bit 11	ON	OFF -
	12 Bit 12	ON	OFF -
	13 Bit 13	ON	OFF -
	14 Bit 14	ON	OFF -
	15 Bit 15	ON	OFF -
Dependency:	Refer to: p2099		

r2095.0..15	BO: Connector-binector converter binector output / Con/bin outp				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: 2468, 9360	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[1].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refer to: p2099				

p2098[0...1]	Inverter connector-binector converter binector output / Con/bin outp inv				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: U, T		Scaling: -	Dyn. index: -	
	Unit group: -		Unit selection: -	Func. diagram: 2468, 9360	
	Min		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Setting to invert the individual binector outputs of the connector-binector converter.				
	Using p2098[0], the signals of connector input p2099[0] are influenced.				
	Using p2098[1], the signals of connector input p2099[1] are influenced.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
	14	Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	Refer to: r2094, r2095, p2099				

p2099[0...1]	CI: Connector-binector converter signal source / Con/bin S_src		
	Access level: 3	Calculated: -	Data type: U32 / Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2468, 9360
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the connector-binector converter.		
	A PZD receive word can be selected as signal source. The signals are available to be serially passed-on (interconnection).		
Dependency:	Refer to: r2094, r2095		
Note:	From the signal source set via the connector input, the corresponding lower 16 bits are converted. p2099[0...1] together with r2094.0... 15 and r2095.0... 15 forms two connector-binector converters: Connector input p2099[0] to binector output in r2094.0... 15		
	Connector input p2099[1] to binector output in r2095.0... 15		

p2100[0...19]	Change fault response fault number / Chng resp F_no		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8050, 8075
	Min	Max	Factory setting
	0	65535	0
Description:	Selects the faults for which the fault response should be changed		
Dependency:	The fault is selected and the required response is set under the same index.		
	Refer to: p2101		
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.		

2.2 List of parameters

p2101[0...19]	Change fault response response / Chng resp resp		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8050, 8075
	Min	Max	Factory setting
	0	6	0
Description:	Sets the fault response for the selected fault.		
Value:	0: NONE		
	1: OFF1		
	2: OFF2		
	3: OFF3		
	5: STOP2		
	6: Internal armature short-circuit / DC braking		
Dependency:	The fault is selected and the required response is set under the same index.		
Notice:	For the following cases, it is not possible to re-parameterize the fault response to a fault:		
	- fault number does not exist (exception value $=0$).		
	- Message type is not "fault" (F).		
	- fault response is not permissible for the set fault number.		
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.		
	The fault response can only be changed for faults with the appropriate identification.		
	Example:		
	F12345 and fault response = NONE (OFF1, OFF2)		
	--> The fault response NONE can be changed to OFF1 or OFF2.		
	For value $=1$ (OFF1):		
	Braking along the ramp-function generator down ramp followed by a pulse inhibit.		
	For value $=2$ (OFF2):		
	Internal/external pulse inhibit.		
	For value = 3 (OFF3):		
	Braking along the OFF3 down ramp followed by a pulse inhibit.		
	For value $=5$ (STOP2):		
	n_set $=0$		
	For value $=6$ (armature short-circuit, internal/DC braking):		
	This value can only be set for all drive data sets when p1231 $=4$.		
	a) DC braking is not possible for synchronous motors.		
	b) DC braking is possible for induction motors.		
p2103[0...n]	BI: 1st acknowled	1st acknowled	
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2441, 2442, 2443, 2447, 2475, 2546, 9220, 9677, 9678
	Min	Max	Factory setting
	-	-	[0] 2090.7
			[1] 722.2
Description:	Sets the first signal source to acknowledge fauls.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	A fault acknowledgment is triggered with a $0 / 1$ signal.		

p2103[0...n]	BI: 1st acknowledge faults / 1st acknowledge		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2441, 2442, 2443, 2447, 2475, 2546, 9220, 9677, 9678
	Min	Max	Factory setting
	-	-	$\text { [0] } 722.2$
			[1] 0
Description:	Sets the first signal source to acknowledge faults.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	A fault acknowledgment is triggered with a $0 / 1$ signal.		
p2104[0...n]	BI: 2nd acknowledge faults / 2nd acknowledge		
G120C_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_PN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2546, 8060
	Min	Max	Factory setting
	-	-	[0] 722.2
			[1] 0
Description:	Sets the second signal source to acknowledge faults.		
Note:	A fault acknowledgment is triggered with a 0/1 signal.		
p2104[0...n]	BI: 2nd acknowledge faults / 2nd acknowledge		
G120C_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
G120C_CAN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2546, 8060
	Min	Max	Factory setting
	-	-	0
Description:	Sets the second signal source to acknowledge faults.		
Note:	A fault acknowledgment is triggered with a 0/1 signal.		
p2106[0...n]	BI: External fault 1 / External fault 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
		-	1
Description:	Sets the signal source for external fault 1.		
Dependency:	Refer to: F07860		
Note:	An external fault is triggered with a $1 / 0$ signal.		
r2109[0..63]	Fault time removed in milliseconds / t_fit resolved ms		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8050, 8060
	Min	Max	Factory setting
	- [ms]	- [ms]	
Description:	Displays the system runtime in milliseconds when the fault was removed.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2130, r2133, r2136		
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		

2.2 List of parameters

r2110[0...63]	Alarm number / Alarm number		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8065
	Min	Max	Factory setting
	-	-	-
Description:	This parameter is identic		
p2111	Alarm counter / Alarm counter		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8050, 8065
	Min	Max	Factory setting
	0	65535	0
Description:	Number of alarms that have occurred after the last reset.		
Dependency:	When p2111 is set to 0 , the following is initiated:		
	- all of the alarms of the alarm buffer that have gone [0...7] are transferred into the alarm history [8...63].		
	- the alarm buffer [0...7] is deleted.		
	Refer to: r2110, r2122, r2123, r2124, r2125		
Note:	The parameter is reset to	R ON.	
p2112[0...n]	BI: External alarm 1 / External alarm 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external alarm 1.		
Dependency:	Refer to: A07850		
Note:	An external alarm is triggered with a $1 / 0$ signal.		
p2118[0...19]	Change message type message number / Chng type msg_no		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 8050, 8075
	Min	Max	Factory setting
	0	65535	0
Description:	Selects faults or alarms for which the message type should be changed.		
Dependency:	Selects the fault or alarm selection and sets the required type of message realized under the same index Refer to: p2119		
Note:	Re-parameterization is also possible if a message is present. The change only becomes effective after the message has gone.		

p2119[0...19]	Change message type type / Change type type		
	Calculated: -		
	Access level: 3	Scaling: -	Data type: Integer16

2.2 List of parameters

r2123[0...63]	Alarm time received in milliseconds / t_alarm recv ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 8050, 8065
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the alarm occurred.		
Dependency:	Refer to: r2110, r2122, r2124, r2125, r2134		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139). The structure of the alarm buffer and the assignment of the indices is shown in r 2122 .		

r2124[0...63]	Alarm value / Alarm value		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Unit selection: -	Dyn. index: -
	Unit group: -	Max	Func. diagram: 8050, 8065
	Min	-	Factory setting

r2125[0...63]	Alarm time removed in milliseconds / t_alarm res ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Unit selection: -
	Unit group: -	Max	Func. diagram: 8050,8065
	Min	$-[\mathrm{ms}]$	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	
Description:	Displays the system runtime in milliseconds when the alarm was cleared.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2134		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r 2122.		

p2126[0...19]	Change acknowledge mode fault number / Chng ackn F_no		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8050, 8075
	Min	Max	Factory setting
	0	65535	0
Description:	Selects the faults for which the acknowledge mode is to be changed		
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index		
Note:	Re-parameterization is resolved.	f a fault is present.	ecomes effective after the faul

p2128[0...15]	Faults/alarms trigger selection / F/A trigger sel		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8050,8070
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the faults/alarms for which a trigger signal should be generated in r2129.0...15.		
Dependency:	If the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0...15 is set.		
	Refer to: r2129		

r2129.0...15	CO/BO: Faults/alarms trigger word / F/A trigger word				
	Acc	ss level: 3	Calculated: -	Data type: Unsigned16	
		be changed: -	Scaling: -	Dyn. index:-	
	Unit	group: -	Unit selection: -	Func. diagram: 8070	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and BICO output for the trigger signals of the faults/alarms set in $\mathrm{p} 2128[0 \ldots 15]$.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Trigger signal p2128[0]		OFF	Pr
		Trigger signal p2128[1]	ON	OFF	-
	02	Trigger signal p2128[2]	ON	OFF	-
	03	Trigger signal p2128[3]	ON	OFF	-
	04	Trigger signal p2128[4]	ON	OFF	-
	05	Trigger signal p2128[5]	ON	OFF	-
	06	Trigger signal p2128[6]	ON	OFF	-
	07	Trigger signal p2128[7]	ON	OFF	-
	08	Trigger signal p2128[8]	ON	OFF	-
	09	Trigger signal p2128[9]	ON	OFF	-
	10	Trigger signal p2128[10]	ON	OFF	-

2.2 List of parameters

	11	Trigger signal p2128[11]	ON	OFF
	12	Trigger signal p2128[12]	ON	OFF
	13	Trigger signal p2128[13]	ON	OFF
	14	Trigger signal p2128[14]	ON	OFF
	15	Trigger signal p2128[15]	ON	OFF
Dependency:	If the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0... 15 is set. Refer to: p2128			
Note:	CO: $\mathrm{r} 2129=0$--> None of the selected messages has occurred.			

r2130[0...63]	Fault time received in days / t_fault recv days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8060
	Min	Max	Factory setting
	-	-	-
Description:	Displays the system runtime in days when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2133, r2136		
Notice:	The time comprises r 2130 (days) and r0948 (milliseconds).		
	The value displayed in r 2130 refers to January 1, 1970		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in 22139).		
r2131	CO: Actual fault code / Act fault code		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8060
	Min	Max	Factory setting
	-	-	-
Description:	Displays the code of the oldest active fault. 0 : No fault present.		
Note:			

r2132	CO: Actual alarm code / Actual alarm code		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8065
	Min	Max	Factory setting
	-	-	
Description:	Displays the code of the last alarm that occurred.		
Note:	0: No alarm present.		

r2133[0...63]	Fault value for float values / Fault val float		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8060
	Min	-	Factory setting
	-	-	
Description:	Displays additional information about the fault that occurred for float values.		
Dependency:	Refer to: ro945, r0947, ro948, ro949, r2109, r2130, r2136		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in $r 2139$).		

2.2 List of parameters

r2139.0.. 15	CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: - S		Scaling: -	Dyn. index: -	
	Unit group: - U		Unit selection: -	Func. diagram: 2548	
	Min Max		Max	Factory setting	
	-		-	-	
Description:	Display and BICO output for status word 1 of faults and alarms.				
Bit field:		Signal name	1 signal	0 signal	FP
	Bit0001	Being acknowledged	Yes	No	-
		Acknowledgment required	Yes	No	-
		Fault present	Yes	No	8060
		Internal message 1 present	Yes	No	-
		Alarm present	Yes	No	8065
		Internal message 2 present	Yes	No	-
	08	Alarm class bit 0	High	Low	-
	12	Alarm class bit 1	High	Low	-
		Maintenance required	Yes	No	-
		Maintenance urgently required	Yes	No	-
	15	Fault gone/can be acknowledged	d Yes	No	-
Note:	For bit 03, 07:				
	These bits are set if at least one fault/alarm occurs. Data is entered into the fault/alarm buffer with delay. This is the reason that the fault/alarm buffer should only be read if, after "fault present" or "alarm present" has occurred, a change in the buffer was also detected (r0944, r9744, r2121).				
	For bit 06, 08:				
	These status bits are used for internal diagnostic purposes only.				
	For bits 11, 12:				
	These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.				
p2141[0...n]	Speed threshold 1 / n_thresh val 1				
	Access level: 3		Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T Scait		Scaling: -	Dyn. index: DDS, p0180	
	Unit group: 3_1 Un		Unit selection: p0505	Func. diagram: 8010	
	Min M		Max	Factory setting	
	0.00 [rpm] 21		210000.00 [rpm]	5.00 [rpm]	
Description:	Sets the speed threshold value for the signal "f or n comparison value reached or exceeded" (BO: r2199.1).				
Dependency:	Refer to: r2199				
p2153[0...n]	Speed actual value filter time constant / n_act_filt T				
	Access level: 3		Calculated: -	Data type: FloatingPoint32	
	Can be changed: U, T S		Scaling: -	Dyn. index: DDS, p0180	
	Unit group: - U		Unit selection: -	Func. diagram: 8010	
	Min M		Max	Factory setting	
	0 [ms] 10		1000000 [ms]	0 [ms]	
Description:	Sets the time constant of the PT1 element to smooth the speed / velocity actual value. The smoothed actual speed/velocity is compared with the threshold values and is only used for messages and signals.				
Dependency:	Refer to: r2169				

p2155[0...n]	Speed threshold 2 / n_thresh val 2			
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 8010	
	Min	Max	Factory setting	
	0.00 [rpm]	210000.00 [rpm]	900.00 [rpm]	
Description:	Sets the speed threshold value for the following messages:			
	"\|n_act	> speed threshold value 2" (BO: r2197.2)		
Dependency:	Refer to: r2197			
p2156[0...n]	On delay comparison value reached / t_on cmpr val rchd			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Unit group: -	Unit selection: -	Func. diagram: 8010	
	Min	Max	Factory setting	
	0.0 [ms]	10000.0 [ms]	0.0 [ms]	
Description:	Sets the switch-in delay time for the signal "comparison value reached" (BO: r2199.1).			
Dependency:	Refer to: p2141, r2199			
p2165[0...n]	Load monitoring stall monitoring upper threshold / Stall_mon up thr			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 8013	
	Min	Max	Factory setting	
	0.00 [rpm]	210000.00 [rpm]	0.00 [rpm]	
Description:	Sets the upper speed threshold of the stall monitoring of the pump or fan.			
	The lower limit is formed by the speed threshold 1 of the load monitoring (p2182).			
	The stall monitoring is active between p2182 and p2165.			
Dependency:	The following applies: p2182 < p2165			
	Refer to: A07891, F07894			
Note:	For p2165 = 0 or p2165 < p2182, the following applies:			
	There is no special stall monitoring for the pump/fan, but only the remaining load monitoring functions (e.g. leakage monitoring for a pump) for the pump or fan are active.			
p2168[0...n]	Load monitoring stall monitoring torque threshold / Stall_mon M_thresh			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 8013	
	Min	Max	Factory setting	
	0.00 [Nm]	20000000.00 [Nm]	$10000000.00[\mathrm{Nm}]$	
Description:	Sets the torque threshold of the stall monitoring of the pump or fan. If, in the monitored speed range from p2182 to p2165, the torque exceeds this threshold, then this is evaluated as either the motor having stalled or heavy-duty starting.			
Dependency:	For pumps, the following applies (p2193 = 4):			
	- the leakage characteristic must lie below the torque threshold for the stall monitoring			
	- the torque threshold for dry running operation must lie below the torque threshold for stall monitoring For fans, the following applies (p2193 = 5):			
	- the torque threshold for the stall monitoring must lie above the torque threshold to identify belt breakage (p 2191). Refer to: p2165, p2191			

2.2 List of parameters

p2174[0...n]	Torque threshold value 1 / M_thresh val 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 8012
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	5.13 [Nm]
Description:	Sets the torque threshold value for the messages:		
	"Torque setpoint < torque threshold value 1 and n _set reached" (BO: r2198.9)		
	"Torque setpoint < torque threshold value 1" (BO: r2198.10)		
	"Torque setpoint > torque threshold value 1" (BO: r2198.13)		
Dependency:	Refer to: p2195, r2198		

p2191[0...n]	Load monitoring torque threshold no load / M_thresh no load		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [Nm]	$20000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Setting of the torque threshold to identify dry running operation for pumps or belt breakage for fans.		
Dependency:	The following applies: p2191< 2168 if p2168 <> 0		
	Refer to: A07892, F07895		
Note:	For the setting p2191 = 0, the monitoring for dry running operation or belt breakage is deactivated. Pre-assignment: p2191 = 5% of the rated motor torque (p0333).		

p2194[0...n]	Torque threshold value 2 / M_thresh val 2		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	90.00 [\%]
Description:	Sets the torque threshold value for the message "Torque utilization < torque threshold value 2 " (BO: r2199.11). The message "torque setpoint < p2174" (BO: r2198.10) and "torque utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired.		
Dependency:	Refer to: r0033, p2195, r2199		
p2195[0...n]	Torque utilization switch-off delay / M_util t_off		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	800.0 [ms]
Description:	The message "torque setpoint < p2174" (BO: r2198.10) and "torque utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired.		
Dependency:	Refer to: p2174, p2194		

2.2 List of parameters

r2197.0.. 13	CO/BO: Status word monitoring 1 / ZSW monitor 1					
	Access level: 3		Calculated: -	Data type: Unsigned16		
	Can be changed: -		Scaling: -	Dyn. index: -		
	Unit group: -		Unit selection: -	Func. diagram: 2534		
	Min		Max	Factory setting		
				-		
Description:	Display and BICO output for the first status word of the monitoring functions.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	00	\|n_act	<= n_min p1080	Yes	No	8022
	01	\mid n_act $<=$ speed threshold value 2 p 2155	Yes	No	8010	
	02	\mid n_act $>$ speed threshold value 2 p2155	Yes	No	8010	
	03	n_act $>=0$	Yes	No	8011	
	04	$\mid \mathrm{n}$ _act\| >= n_set	Yes	No	8022	
	05	$\mid \mathrm{n}$ _act\| <= n_standstill p1226	Yes	No	8022	
	06	\mid n_act $>$ n_max	Yes	No	8010	
	07	Speed setpoint - actual value deviation in tolerance t_off	Yes	No	8011	
	08	I_act >= I_threshold value p2170	Yes	No	8022	
	09	Vdc_act <= Vdc_threshold value p2172	Yes	No	8022	
	10	Vdc_act > Vdc_threshold value p2172	Yes	No	8022	
	11	Output load is not present	Yes	No	8022	
	12	$\mid \mathrm{n}$ _act\| > n_max (delayed)	Yes	No	8023	
	13	\|n_act	> n_max (F07901)	Yes	No	-
Notice:	For bit 06:					
	When the overspeed is reached, this bit is set and F07901 output immediately following this. The bit is canceled again as soon as the next pulse inhibit is present.					
Note:	For bit 00:					
	The threshold value is set in p1080 and the hysteresis in p2150.					
	For bit 01, 02:					
	The threshold value is set in p2155 and the hysteresis in p2140.					
	For bit 03:					
	1 signal direction of rotation positive.					
	0 signal: direction of rotation negative.					
	The hysteresis is set in p2150.					
	For bit 04:					
	The threshold value is set in r1119 and the hysteresis in p2150.					
	For bit 05:					
	The threshold value is set in p1226 and the delay time in p1228.					
	For bit 06:					
	The hysteresis is set in p2162.					
	For bit 07:					
	The threshold value is set in p2163 and the hysteresis is set in p2164.					
	For bit 08:					
	The threshold value is set in p2170 and the delay time in p2171.					
	For bit 09, 10:					
	The threshold value is set in p2172 and the delay time in p2173.					
	For bit 11:					
	The threshold value is set in p2179 and the delay time in p2180.					
	For bit 12:					
	The threshold value is set in p2182, the hysteresis in p2162, and the delay time (for canceling the signal) in p2152. For bit 13:					
		for internal Siemens use.				

p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to switch in/switch out the technology controller. The technology controller is switched in with a 1 signal.		
p2201[0...n]	CO: Technology controller fixed value 1 / Tec_ctrl fix val1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	10.00 [\%]
Description:	Sets the value for fixed value 1 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2202[0...n]	CO: Technology controller fixed value 2 / Tec_ctr fix val 2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9 _1	Unit selection: p0595	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	$-200.00[\%]$	$200.00[\%]$	$20.00[\%]$
Description:	Sets the value for fixed value 2 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2203[0...n]	CO: Technology controller fixed value 3/Tec_ctr fix val 3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: O_1 2	Unit selection: p0595	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	$-200.00[\%]$	$200.00[\%]$	30.00 [\%]
Description:	Sets the value for fixed value 3 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2204[0...n]	CO: Technology controller fixed value 4/Tec_ctr fix val 4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	$-200.00[\%]$	$200.00[\%]$	40.00 [\%]
Description:	Sets the value for fixed value 4 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2205[0...n]	CO: Technology controller fixed value 5 / Tec_ctr fix val 5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	50.00 [\%]
Description:	Sets the value for fixed value 5 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2206[0...n]	CO: Technology controller fixed value 6 / Tec_ctr fix val 6		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	60.00 [\%]
Description:	Sets the value for fixed value 6 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2207[0...n]	CO: Technology controller fixed value 7 / Tec_ctr fix val 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	70.00 [\%]
Description:	Sets the value for fixed value 7 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2208[0...n]	CO: Technology controller fixed value 8 / Tec_ctr fix val 8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	80.00 [\%]
Description:	Sets the value for fixed value 8 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2209[0...n]	CO: Technology controller fixed value 9 / Tec_ctr fix val 9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	90.00 [\%]
Description:	Sets the value for fixed value 9 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2210[0...n]	CO: Technology controller fixed value 10 / Tec_ctr fix val 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the value for fixed value 10 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2211[0...n]	CO: Technology controller fixed value 11 / Tec_ctr fix val 11		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	110.00 [\%]
Description:	Sets the value for fixed value 11 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data s		

p2212[0...n]	CO: Technology controller fixed value 12/Tec_ctr fix val 12		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: $9 _1$	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	$-200.00[\%]$	$200.00[\%]$	$120.00[\%]$
Description:	Sets the value for fixed value 12 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2213[0...n]	CO: Technology controller fixed value 13 / Tec_ctr fix val 13		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	130.00 [\%]
Description:	Sets the value for fixed value 13 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data		

p2214[0...n]	CO: Technology controller fixed value 14 / Tec_ctr fix val 14		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	140.00 [\%]
Description:	Sets the value for fixed value 14 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data		

p2215[0...n]	CO: Technology controller fixed value 15 / Tec_ctr fix val 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	150.00 [\%]
Description:	Sets the value for fixed value 15 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2216[0...n]	Technology controller fixed value selection method / Tec_ctr FixVal sel		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	1	2	1
Description:	Sets the method to select the fixed setpoints.		
Value:	1: Direct selection		
p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller.		
Dependency:	Refer to: p2221, p2222, p2223		
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller.		
Dependency:	Refer to: p2220, p2222, p2223		
p2222[0...n]	BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller. Refer to: p2220, p2221, p2223		
Dependency:			

2.2 List of parameters

Notice:	The following prerequisites must be fulfilled in order to be able to save the setpoint in a non-volatile fashion: - Firmware with V2.3 or higher. - Control Unit 320 (CU320) with hardware version C or higher (module with NVRAM).
Note:	For bit 00:
	0 : The setpoint for the motorized potentiometer is not saved and after ON is entered using p2240.
	1: The setpoint for the motorized potentiometer is saved and after ON is entered using r2231. In order to save in a non-volatile fashion, bit 03 should be set to 1 .
	For bit 02:
	0 : Without initial rounding-off
	1: With initial rounding-off.
	The selected ramp-up/down time is correspondingly exceeded. The initial rounding-off is a sensitive way of specifying small changes (progressive reaction when keys are pressed). The jerk for initial rounding is independent of the ramp-up time and only depends on the selected maximum value (p 2237).
	It is calculated as follows:
	$r=0.0001 \times \max (\mathrm{p} 2237,\|\mathrm{p} 2238\|)$ [\%] / 0.13^2 [s^2]
	The jerk is effective until the maximum acceleration is reached (a_max = p2237 [\%] / p2247 [s] or a_max = p2238 [\%] / p2248 [s]), after which the drive continues to run linearly with constant acceleration.
	The higher the maximum acceleration (the lower that p2247 is), the longer the ramp-up time increases with respect to the set ramp-up time.
	For bit 03:
	0 : Non-volatile data save deactivated.
	1. The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for p2230.0 $=1$).
	For bit 04:
	When the bit is set, the ramp-function generator is computed independent of the pulse enable. The actual output value of the motorized potentiometer is always in r2250.
r2231	Technology controller motorized potentiometer setpoint memory / Tec_ctrl mop mem
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: - Scaling: - Dyn. index: -
	Unit group: 9_1 Unit selection: p0595 Func. diagram: 7954
	Min Max Factory setting
	- [\%] - [\%] - [\%]
Description:	Displays the setpoint memory for the motorized potentiometer of the technology controller.
	For p2230.0 = 1, the last setpoint that was saved is entered after ON.
Dependency:	Refer to: p2230
p2235[0...n]	BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise
	Access level: 3 Calculated: - Data type: U32 / Binary
	Can be changed: T Scaling: - Dyn. index: CDS, p0170
	Unit group: - Unit selection: - Func. diagram: 7954
	Min Max Factory setting
	- - 0
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer of the technology controller.
	The setpoint change (CO: r2250) depends on the set ramp-up time (p2247) and the duration of the signal that is present (BI: p2235).
Dependency:	Refer to: p2236

2.2 List of parameters

p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7954
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to continually reduce the setpoint for the motorized potentiometer of the technology controller The setpoint change (CO: r2250) depends on the set ramp-down time (p 2248) and the duration of the signal that is present (BI: p2236).		
Dependency:	Refer to: p2235		
p2237[0...n]	Technology controller motorized potentiometer maximum value / Tec_ctrl mop max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum value for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2238		
p2238[0...n]	Technology controller motorized potentiometer minimum value / Tec_ctrl mop min		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the minimum value for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2237		
p2240[0...n]	Technology controller motorized potentiometer starting value / Tec_ctrl mop start		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the starting value for the motorized potentiometer of the technology controller. For p2230.0 $=0$, this setpoint is entered after ON.		
Dependency:	Refer to: p2230		
r2245	CO: Technology controller mot. potentiometer setpoint before RFG / Tec_ctr mop befRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator of the technology controller.		
Dependency:	Refer to: r 2250		

p2247[0...n]	Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 7954
	Min	Max	Factory setting
	0.0 [s]	1000.0 [s]	10.0 [s]
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2248		
Note:	The time is referred to 100%.		
	When the initial rounding-off is activated (p2230.2 = 1) the ramp-up is correspondingly extended.		
p2248[0...n]	Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 7954
	Min	Max	Factory setting
	0.0 [s]	1000.0 [s]	10.0 [s]
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2247		
Note:	The time is referred to 100 \%.		
	When the initial rounding-off is activated (p2230.2 = 1) the ramp-down is correspondingly extended.		
r2250	CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	- [\%]		
Description:	Displays the effective setpoint after the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: r2245		
p2251	Technology controller mode / Tec_ctrl mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 3070, 7958
	Min	Max	Factory setting
	0	1	0
Description:	Sets the mode for using the technology controller output.		
Value:	0 : Technology controller as main speed setpoint 1: Technology controller as supplementary speed setpoint		
Dependency:	$\mathrm{p} 2251=0,1$ is only effective if the enable signal of the technology controller is interconnected (222000).		

p2254[0...n]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setpoint 2 of the technology controller.		
Dependency:	Refer to: p2253, p2256		
p2255	Technology controller setpoint 1 scaling / Tec_ctrl set1 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the setpoint 1 of the technology controller.		
Dependency:	Refer to: p2253		
p2256	Technology controller setpoint 2 scaling / Tec_ctrl set2 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the setpoint 2 of the technology controller.		
Dependency:	Refer to: p2254		
p2257	Technology controller ramp-up time / Tec_ctrl t_ramp-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-up time of the technology controller.		
Dependency:	Refer to: p2258		
Note:	The ramp-up time is referred to 100%.		
p2258	Technology controller ramp-down time / Tec_ctrl t_ramp-dn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-down time of the technology controller.		
Dependency:	Refer to: p2257		
Note:	The ramp-down time is referred to 100%.		

2.2 List of parameters

r2260	CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Sets the setpoint after the ramp-function generator of the technology controller.		
p2261	Technology controller setpoint filter time constant / Tec_ctrl set T		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the setpoint filter (PT1) of the technology controller.		
r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFlt		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the smoothed setpoint after the setpoint filter (PT1) of the technology controller		
p2263	Technology controller type / Tec_ctrl type		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0	1	0
Description:	Sets the type of technology controller.		
Value:	0 : $\quad \mathrm{D}$ component in the actual value signal 1: D component in system deviation		
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the actual value of the technology controller.		
p2265	Technology controller actual value filter time constant / Tec_ctrl act T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the actual value filter (PT1) of the technology controller.		

r2266	CO: Technology controller actual value after filter / Tec_ctr act aftFIt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the smoothed actual value after the filter (PT1) of the technology controller.		
p2267	Technology controller upper limit actual value / Tec_ctrl u_lim act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index:-
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the technology controller. Refer to: p2264, p2265, p2271		
Dependency:			
	Refer to: F07426		
Notice:	If the actual value exceeds this upper limit, this results in fault F07426.		
p2268	Technology controller lower limit actual value / Tec_ctrl I_lim act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Unit group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the technology controller. Refer to: p2264, p2265, p2271		
Dependency:			
	Refer to: F07426		
Notice:	If the actual value falls below this lower limit, this results in fault F07426.		
p2269	Technology controller gain actual value / Tech_ctrl gain act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [\%]	500.00 [\%]	100.00 [\%]
Description:	Sets the scaling factor for the actual value of the technology controller. Refer to: p2264, p2265, p2267, p2268, p2271		
Dependency:			
Note:	For 100%, the actual value is not changed.		
p2270	Technology controller actual value function / Tec_ctr ActVal fct		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0	3	0
Description:	Setting to use an arithmetic function for the actual value signal of the technology controller.		
Value:	0 : \quad Output (y) = input (x) 1: Root function (root from x) 2: Square function ($\mathrm{x}^{*} \mathrm{x}$) 3: Cube function ($x^{*} x^{*} x$)		
Dependency:	Refer to: p2264, p2265, p2267, p2268, p2269, p2271		

2.2 List of parameters

p2280	Technology controller proportional gain / Tec_ctrl Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the technology controller.		
Note:	p2280 = 0: The proportional gain is disabled.		
p2285	Technology controller integral time / Tec_ctrl Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min		Factory setting
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the technology controller.		
Notice:	The following applies for p2251 = 0:		
	If the output of the technology controller lies within the range of a suppression (skip) bandwidth (p1091 ... p1092, p 1101) or below the minimum speed (p 1080), the integral component of the controller is held so that the controller temporarily works as a P controller. This is necessary in order to prevent the controller from behaving in an unstable manner, as the ramp-function generator switches to the parameterized up and down ramps (p1120, p1121) at the same time in order to avoid setpoint steps. This state can be exited or avoided by changing the controller setpoint or by using the start speed (= minimum speed).		
Note:	When the controller output reaches the limit, the I component of the controller is held. p2285 = 0:		
	The integral time is disabled and the I component of the controller is reset.		
p2286[0...n]	BI: Hold technology controller integrator / Tec_ctr integ hold		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	56.13
Description:	Sets the signal source to hold the integrator for the technology controller.		
p2289[0...n]	CI: Technology controller precontrol signal / Tec_ctr prectr_sig		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
			0
Description:	Sets the signal source for the precontrol signal of the technology controller.		
p2290[0...n]	BI: Technology controller limiting enable / Tec_ctrl lim enab		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source to enable the technology controller output. The technology controller output is enabled with a 1 signal. The technology controller output is held with a 0 signal.		

2.2 List of parameters

p2291	CO: Technology controller maximum limiting / Tec_ctrl max_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the technology controller.		
Dependency:			
Caution: \uparrow			
p2292	CO: Technology controller minimum limiting / Tec_ctrl min_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit of the technology controller.		
Dependency:	Refer to: p2291		
Caution:	The maximum limit must always be greater than the minimum limit (p2291 > p2292).		
p2293	Technology controller ramp-up/ramp-down time / Tec_ctr t_RU/RD		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramping time for the output signal of the technology controller. Refer to: p2291, p2292		
Dependency:			
Note:	The time refers to the set maximum and minimum limits (p2291, p2292).		
r2294	CO: Technology controller output signal / Tec_ctrl outp_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output signal of the technology controller. Refer to: p2295		
Dependency:			
p2295	CO: Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-100.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the output signal of the technology controller.		

p2296[0...n]	CI: Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	2295[0]	
Description:	Sets the signal source for the scaling value of the technology controller.		
Dependency:	Refer to: p2295		

p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	1084[0]
Description:	Sets the signal source for the maximum limiting of the technology controller.		
Dependency:	Refer to: p2291		
Note:	In order that the output of the technology controller does not exceed the maximum speed limit, its upper limit p2297 should be connected to the actual maximum speed r 1084 .		
	In mode p2251 = 1, p22	be connected to the o	-function generator r1150.

p2298[0...n]	CI: Technology controller minimum limit signal source / Tec_ctrl min_I s_s		
	Access level: 3	Calculated: -	Data type: U32/FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	1087[0]	
Description:	Sets the signal source for the minimum limiting of the technology controller.		
Dependency:	Refer to: p2292		
Note:	If the technology controller is rotated in a negative direction in mode p2251 =0, its lower limit p2298 should be		
	connected to the actual minimum speed r1087.		
	In mode p2251 = 1, p2299 must also be connected to the output of the ramp-function generator r1150.		

p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	-	Factory setting
Description:	-	Sets the signal source for the offset of the output limiting of the technology controller.	
Note:	In mode p2251 $=1$, p2299 must be connected to the output of ramp-function generator r1150 so that the technology controller stops when the speed limits are reached (see also p2297, p2298).		

p2302	Technology controller output signal starting value / Tec_ctr start val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
Description:	$0.00[\%]$	$0.00[\%]$	
	Sets the start value for the output of the technology controller.		
lf the drive is switched on and the technology controller is already enabled (see p2200, ro056.3), then its output			
signal r2294 first goes to the start value p2302, before the controller starts to operate.			

2.2 List of parameters

Dependency:	The starting value is only effective in the mode "technology controller as main speed setpoint" $(p 2251=0)$.
If the technology controller is first enabled when the drive is switched on, a start speed remains ineffective, and the	
controller output starts with the actual setpoint speed of the ramp-function generator.	
Note:	If the technology controller operates on the speed/setpoint channel ($\mathrm{p} 2251=0$), then the starting value is interpreted
as the starting speed and when operation is enabled, is connected to output of the technology controller (r2294).	
If fault F07426 "technology controller actual value limited" occurs while ramping up to the starting value and if the	
associated reaction has been set to "NONE" (see p2100, p2101), the starting value is kept as the speed setpoint	
instead of a switch to closed-loop control operation.	

p2306	Technology controller system deviation inversion / Tec_ctr SysDev inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0	1	0
Description:	Setting to invert the system deviation of the technology controller.		
	The setting depends on the type of control loop.		
Value:	$0: \quad$ No inversion		
	$1: \quad$ Inversion		

Caution:	If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can
become unstable and can oscillate!	
Note:	The correct setting can be determined as follows:
- inhibit the technology controller $(p 2200=0)$.	
- increase the motor speed and in so doing, measure the actual value signal (of the technology controller).	
- if the actual value increases with increasing motor speed, then the inversion should be switched out.	
- if the actual value decreases with increasing motor speed, then the inversion should be set.	
If value $=0$:	
The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor).	
If value $=1$:	
The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).	

p2339	Techn. controller threshold value f. I comp. hold for skip speed / Tec_ctrl thr_skip
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: U, T Scaling: PERCENT Dyn. index: -
	Unit group: 9_1 Unit selection: p0595 Func. diagram: -
	Min Max Factory setting
	0.00 [\%] 200.00 [\%] 2.00 [\%]
Description:	Sets the threshold value for the system deviation of the technology controller, which controls holding the controller integral component in the range of the skip speeds of the ramp-function generator.
Recommendation:	To avoid speed setpoint steps in the range of the skip speeds, we recommend setting p2252 bit $4=1$ (ramp-function generator bypass deactivated).
Dependency:	The parameter has no effect for p2252 bit $5=1$ (integrator hold deactivated).
	Refer to: r2273
Note:	Only p2251 = 0:
	If the output signal of the technology controller reaches a skip band in the speed setpoint channel, then the integral component of the controller is held, if at the same time, the system deviation is lower than the threshold value set here. By holding the integral component, it can be avoided that the controller oscillates in the range of the skip bands.

r2349.0...13	CO/BO: Technology controller status word / Tec_ctrl status		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting

Description: Display and BICO output for the status word of the technology controller.
Bit field:

Bit00	Signal name	1 signal	0 signal	FP
	Technology controller deactivated	Yes	No	
01	Technology controller limited	Yes	No	-
02	Technology controller motorized potentiometer limited max	Yes	No	-
03	Technology controller motorized potentiometer limited min	Yes	No	-
04	Technology controller speed setpoint total in setpoint channel	Yes	No	-
05	Technology controller RFG bypassed in the setpoint channel	Yes	No	-

2.2 List of parameters

06	Technology controller starting value at the current limit	No	Yes
07	Technology controller output negative	Yes	No
08	Technology controller actual value at the minimum	Yes	No
09	Technology controller actual value at the maximum	Yes	No
10	Technology controller output at the minimum	Yes	No
11	Technology controller output at the maximum	Yes	No
12	Fault response active 13	Technology controller limiting enable	Yes

Note: \quad While the technology controller is enabled, the following applies:
When switching off with OFF1, OFF3 and for pulse inhibit, bits 10 and 11 are simultaneously set to 1 as the controller output is defined by the internal limiting.

p2355	PID autotuning offset / PID autotun.offset		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [\%]	20 [\%]	5 [\%]
Description:	This parameter is used to set the excitation type of the PID control loop to be used.		
p2900[0...n]	CO: Fixed value 1 [\%] / Fixed value 1 [\%]		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 1021
	Min	Max	Factory setting
	-10000.00 [\%]	10000.00 [\%]	0.00 [\%]
Description:	Setting and connector output for a fixed percentage value.		
Dependency:	Refer to: p2901, r2902, p2930		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The value can be used to interconnect a scaling function (e.g. scaling the main setpoint).		
p2901[0...n]	CO: Fixed value 2 [\%] / Fixed value 2 [\%]		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 1021
	Min	Max	Factory setting
	-10000.00 [\%]	10000.00 [\%]	0.00 [\%]
Description:	Setting and connector output for a fixed percentage value.		
Dependency:	Refer to: p2900, p2930		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The value can be used to interconnect a scaling function (e.g. scaling of the supplementary setpoint)		
r2902[0..14]	CO: Fixed values [\%] / Fixed values [\%]		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 1021
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for frequently used percentage values.		
Index:	[0] = Fixed value +0 \%		
	$[1]=\text { Fixed value }+5 \%$		
	[2] = Fixed value +10 \%		
	[3] = Fixed value +20 \%		
	[4] = Fixed value +50 \%		
	[5] = Fixed value +100 \%		
	[6] = Fixed value +150 \%		
	[7] = Fixed value +200 \%		
	[8] = Fixed value -5 \%		
	[9] = Fixed value -10 \%		
	[10] = Fixed value -20 \%		
	[11] = Fixed value -50 \%		
	[12] = Fixed value -100 \%		
	[13] = Fixed value -150 \%		
	[14] = Fixed value -200 \%		
Dependency:	Refer to: p2900, p2901, p2930		
Note:	The signal sources can, for example, be used to interconnect scalings.		

p2930[0...n]	CO: Fixed value M [Nm] / Fixed value M [Nm]					
	Access level: 3 Can be changed: U, T		Calculated: -		Data type: FloatingPoint32	
			Scaling: p2003		Dyn. index: DDS, p0180	
	Unit group:		Unit selection: -		Func. diagram: 1021	
	Min		Max		Factory setting	
	-100000.00 [Nm]		100000.00 [Nm]		0.00 [Nm]	
Description:	Setting and connector output for a fixed torque value.					
Dependency:	Refer to: p2900, p2901, r2902					
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.					
Note:	The value can, for example, be used to interconnect a supplementary torque.					
r3113.0... 15	CO/BO: NAMUR message bit bar / NAMUR bit bar					
	Acc	s level: 3	Calculated: -		Data type: Unsigned16	
	Can	e changed: -	Scaling: -		Dyn. index: -	
	Uni	group: -	Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-		-		-	
Description:	Display and BICO output for the status of the NAMUR message bit bar.					
	The faults and alarms are assigned to the appropriate signaling/message classes and influence a specific message bit.					
Bit field:	Bit	Signal name		1 signal	0 signal	
	00	Fault converter inf electronics/softwa		Yes	No	
	01	Network fault		Yes	No	
	02	DC link overvoltag		Yes	No	
	03	Fault drive converter	ctronics	Yes	No	
		Drive converter ov		Yes	No	
	05	Ground fault		Yes	No	
	06	Motor overload		Yes	No	
	07	Bus error		Yes	No	
		External safety-rel		Yes	No	
	10	Error communicatio		Yes	No	
	11	Fault infeed		Yes	No	
		Other faults		Yes	No	
Note:	For bit 00:					
	Hardware or software malfunction was identified. Carry out a POWER ON of the component involved. If it occur again, contact Technical Support.					
	For bit 01:					
	A line supply fault has occurred (phase failure, voltage level, ...). Check the line supply / fuses. Check the supply voltage. Check the wiring.					
	For bit 02:					
	The DC link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply, reactor, voltages). Check the infeed settings.					
	For bit 03:					
	An inadmissible operating state of the power electronics was identified (overcurrent, overtemperature, IGBT failure, ...). Check that the permissible load cycles are maintained. Check the ambient temperatures (fan).					
	For bit 04:					
	The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature / control cabinet cooling.					
	For bit 05:					
	A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the powe cables (connection). Check the motor.					
	For bit 06:					
	The motor was operated outside the permissible limits (temperature, current, torque, ...). Check the load cycles and limits that have been set. Check the ambient temperature / motor cooling.					

For bit 07:
The communication to the higher-level control system (internal coupling, PROFIBUS, PROFINET, ...) is faulted or interrupted. Check the state of the higher-level control system. Check the communication connection/wiring. Check the bus configuration / clock cycles.
For bit 08:
A safety operation monitoring function (Safety) has detected an error.
For bit 09:
When evaluating the encoder signals (track signals, zero marks, absolute values, ...) an illegal signal state was detected. Check the encoder / state of the encoder signals. Observe the maximum frequencies.
For bit 10:
The internal communication between the SINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ wiring. Ensure an EMC-compliant design. Observe the maximum permissible quantity structure / clock cycles.
For bit 11:
The infeed is faulted or has failed. Check the infeed and the surroundings (line supply, filter, reactors, fuses, ...). Check the closed-loop infeed control.
For bit 15:
Group fault. Determine the precise cause of the fault using the commissioning tool.

p3117	Change safety message type / Ch. Sl mess type		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the re-parameterization of all safety messages for faults and alarms.		
	The relevant message type during changeover is selected by the firmware.		
	0: Safety messages are not re-parameterized		
	1: Safety messages are re-parameterized		
Note:	A change only becomes effective after a POWER ON.		
r3120[0...63]	Component fault / Comp fault		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8060
	Min	Max	Factory setting
	0	3	-
Description:	Displays the component of the fault which has occurred.		
Value:	0: No assignment		
	1: Control Unit		
	2: Power Module		
	3: Motor		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3122		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
r3121[0..63]	Component alarm / Comp alarm		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 8065
	Min	Max	Factory setting
	0	3	-
Description:	Displays the component of the alarm which has occurred.		
Value:	0: \quad No assignment		
	1: \quad Control Unit		
	2: Power Module		

2.2 List of parameters

Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r3123
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.

r3123[0...63]	Diagnostic attribute alarm / Diag_attr alarm				
		s level: 3 Calcul	Calculated: -	Data type: Unsigned32	
		e changed: - Scaling	Scaling: -	Dyn. index: -	
		group: - Unit se	Unit selection: -	Func. diagram: 8065	
	Min		Max	Factory setting	
	-		-		
Description:	Displays the diagnostic attribute of the alarm which has occurred.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Hardware replacement recommended	Yes	No	-
	11	Alarm class bit 0	High	Low	-
	12	Alarm class bit 1	High	Low	-
	13	Maintenance required	Yes	No	-
	14	Maintenance urgently required	Yes	No	-
	15	Message has gone	Yes	No	-
	16	PROFIdrive fault class bit 0	High	Low	-
	17	PROFIdrive fault class bit 1	High	Low	-
	18	PROFldrive fault class bit 2	High	Low	-
	19	PROFIdrive fault class bit 3	High	Low	-
	20	PROFIdrive fault class bit 4	High	Low	-
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r3121				
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).				
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.				
	For bit 12, 11:				
	These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.				
	For bits $20 . .16$:				
	Bits 20, 19, 18, 17, $16=0,0,0,0,0-->$ PROFldrive message class 0 : not assigned				
	Bits 20, 19, 18, 17, $16=0,0,0,0,1->$ PROFIdrive message class 1: hardware fault/software error				
	Bits 20, 19, 18, 17, $16=0,0,0,1,0-->$ PROFldrive message class 2 : line fault				
	Bits $20,19,18,17,16=0,0,0,1,1$--> PROFIdrive message class 3 : supply voltage fault				
	Bits 20, 19, 18, 17, $16=0,0,1,0,0-->$ PROFldrive message class 4: DC link fault				
	Bits 20, 19, 18, 17, $16=0,0,1,0,1->$ PROFIdrive message class 5: power electronics faulted				
	Bits 20, 19, 18, 17, $16=0,0,1,1,0-->$ PROFIdrive message class 6: overtemperature electronic components				
	Bits 20, 19, 18, 17, $16=0,0,1,1,1-->$ PROFIdrive message class 7: ground fault/phase fault detected				
	Bits 20, 19, 18, 17, $16=0,1,0,0,0-->$ PROFldrive message class 8: motor overload				
	Bits 20, 19, 18, 17, $16=0,1,0,0,1$--> PROFldrive message class 9: communication error to the higher-level control				
	Bits $20,19,18,17,16=0,1,0,1,0$--> PROFIdrive message class 10 : safe monitoring channel has identified an error				
	Bits 20, 19, 18, 17, $16=0,1,0,1,1$--> PROFIdrive message class 11: incorrect position actual value/speed actual value or not available				
	Bits 20, 19, 18, 17, $16=0,1,1,0,0-->$ PROFldrive message class 12: internal (DRIVE-CLiQ) communication error				
	Bits 20, 19, 18, 17, $16=0,1,1,0,1->$ PROFldrive message class 13: infeed unit faulted				
	Bits 20, 19, 18, 17, $16=0,1,1,1,0$--> PROFldrive message class 14: braking controller/Braking Module faulted				
	Bits 20, 19, 18, 17, $16=0,1,1,1,1->$ PROFldrive message class 15: line filter faulted				
	Bits $20,19,18,17,16=1,0,0,0,0$--> PROFIdrive message class 16 : external measured value/signal state outside the permissible range				
	Bits 20, 19, 18, 17, $16=1,0,0,0,1$--> PROFIdrive message class 17: application/technology function faulted				
	Bits $20,19,18,17,16=1,0,0,1,0$--> PROFIdrive message class 18: error in the parameterization/configuration/commissioning sequence				
	Bits 20, 19, 18, 17, $16=1,0,0,1,1$--> PROFIdrive message class 19: general drive fault				
	Bits 20, 19, 18, 17, $16=0,1,1,0,0$--> PROFldrive message class 20 : auxiliary unit faulted				

p3233[0...n]	Torque actual value filter time constant / M_act_filt T		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 8013
	Min	Max	Factory setting
	0 [ms]	1000000 [ms]	100 [ms]
Description:	Sets the time constant for the PT1 element to smooth the torque actual value.		
	The smoothed torque actual value is compared with the threshold values and is only used for messages and signals.		
r3313	Efficiency optimization 2 optimum flux / Optimum flux		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 6722, 6837
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the calculated, optimum flux.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1401, p3315, p3316		
Note:	The function is activated via p1401.14 = 1 .		
p3315[0...n]	Efficiency optimization 2 minimum flux limit value / Min flux lim val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6722, 6837
	Min	Max	Factory setting
	10.0 [\%]	200.0 [\%]	50.0 [\%]
Description:	Sets the minimal limit value for the calculated optimum flux.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1401, r3313, p3316		
Note:	The function is activated via p1401.14 = 1 .		
p3316[0...n]	Efficiency optimization 2 maximum flux limit value / Max flux lim val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 6722, 6837
	Min	Max	Factory setting
	10.0 [\%]	200.0 [\%]	
Description:	Sets the maximum limit value for the calculated optimum flux.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1401, r3313, p3315		
Note:	The function is activated via p1401.14 = 1 .		
p3320[0...n]	Fluid flow machine power point 1 / Fluid_mach P1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	25.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required. This parameter specifies the power (P) of point 1 as a [\%].		

Note: \quad The reference value for power and speed is the rated power/rated speed. The energy saved is displayed in r0041.

p3324[0...n]	Fluid flow machine power point 3 / Fluid_mach P3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	77.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 3 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3325, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3325[0...n]	Fluid flow machine speed point 3 / Fluid_mach n3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	50.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 3 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		

p3326[0...n]	Fluid flow machine power point 4 / Fluid_mach P4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	92.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 4 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		

p3327[0...n]	Fluid flow machine speed point 4 / Fluid_mach n4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	75.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 4 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		

p3328[0...n]	Fluid flow machine power point 5 / Fluid_mach P5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 5 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3329[0...n]	Fluid flow machine speed point 5 / Fluid_mach n5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 5 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3328		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3330[0...n]	BI: 2/3 wire control command 1/2/3 wire cmd 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2272, 2273
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for command 1 for the two-wire control/three-wire control.		
Dependency:	Refer to: p0015, p3331, p3332, r3333, p3334		
Note:	The mode of operation of this binector input is dependent on the wire control set in p0015.		
p3331[0...n]	BI: 2/3 wire control command 2 / 2/3 wire cmd 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Unit group: -	Unit selection: -	Func. diagram: 2272, 2273
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for command 2 for the two-wire control/three-wire control.		
Dependency:	Refer to: p0015, p3330, p3332, r3333, p3334		
Note:	The mode of operation of this binector input is dependent on the wire control set in p0015.		

2.2 List of parameters

p3332[0...n]	BI: 2/3 wire control command 3/2/3 wire cmd 3			
	Access level: 3	Calculated: -	Data type: U	
	Can be changed: U, T	Scaling: -	Dyn. index:	
	Unit group: -	Unit selection: -	Func. diagra	
	Min	Max	Factory setti	
	-	-	0	
Description:	Sets the signal source for command 3 for the two-wire control/three-wire control.			
Dependency:	Refer to: p0015, p3330, p3331, r3333, p3334			
Note:	The mode of operation of this binector input is dependent on the wire control set in p0015.			
r3333.0... 3	CO/BO: 2/3 wire control control word / 2/3 wire STW			
	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagram: 2272, 2273	
	Min	Max	Factory setting	
	-	-		
Description:	Displays the control word for the two wire control/three wire control.			
	The control signals are dependent on the wire control set in p0015 and the signal states at the digital inputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON	Yes	No	-
	01 Reversing	Yes	No	-
	02 ON inverted	Yes	No	-
	03 Reversing inverted	Yes	No	-
Dependency:	Refer to: p0015, p3330, p3331, p3332, p3334			
p3334	2/3 wire control selection / 2/3 wire select			
	Access level: 4	Calculated: -	Data type: Integer16	
	Can be changed: U, T	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagram: 2272, 2273	
	Min	Max	Factory setting	
	0	4	0	
Description:	Sets the two wire control/three wire control.			
Value:	0: \quad No wire control			
	1: Two wire control clockwise/counterclockwise 1			
	2: Two wire control clockwise/counterclockwise 2			
	$\begin{array}{ll}\text { 3: } & \text { Three wire control enable clockwise/counterclockwise } \\ \text { 4: } & \text { Three wire control enable ON/reversing }\end{array}$			
Dependency:	Refer to: p0015, p3330, p3331, p3332, r3333			
Note:	This value depends on the wire control set in p0015.			
p3340[0...n]	BI: Limit switch start / Lim switch start			
	Access level: 3	Calculated: -	Data type: U32 / Binary	
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170	
	Unit group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	0	
Description:	Sets the signal source for the start of motion dependent on the sign of the setpoint.			
Dependency:	Refer to: p3342, p3343, r3344			
	Refer to: A07352			

p3342[0...n]	BI: Limit switch plus / Lim switch plus					
	Acc	ss level: 3	Calculated: -		Data type: U32 / Binary	
	Can	be changed: T	Scaling: -		Dyn. index: CDS, p0170	
		group: -	Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-		-		1	
Description:	Sets the signal source for the limit switch plus.					
	BI: p3342 = 1-signal:					
	Limit switch is inactive.					
	BI: p3342 = 0 signal:					
	Limit switch is active.					
Dependency:	Refer to: p3340, p3343, r3344					
Note:	For p1113 = 0, the drive traverses with a positive speed setpoint towards the positive limit switch - or for p1113 $=$ with a negative speed setpoint.					
p3343[0...n]	BI: Limit switch minus / Lim switch minus					
	Acc	ss level: 3	Calcu		Data type: U32 / Binary	
	Can	be changed: T	Scalin		Dyn. index: CDS, p0170	
		group: -	Unit s	on: -	Func. diagram: -	
	Min		Max		Factory setting	
	-		-		1	
Description:	Sets the signal source for the limit switch minus.					
	BI: p3343 = 1-signal:					
	Limit switch is inactive.					
	BI: p3343 = 0 signal:					
	Limit switch is active.					
Dependency:	Refer to: p3340, p3342, r3344					
Note:	For p1113 = 0, the drive traverses with a negative speed setpoint towards the minus limit switch - or for $\mathrm{p} 1113=$ with a positive speed setpoint.					
r3344.0... 5	CO/BO: Limit switch status word / Lim sw ZSW					
	Acc	ss level: 3	Calcu		Data type: Unsigned16	
	Can	be changed: -	Scalin		Dyn. index: -	
	Uni	group: -	Unit s	on: -	Func. diagram: -	
	Min		Max		Factory setting	
			-			
Description:	Display and BICO output for the status word of the limit switch.					
Bit field:	Bit	Signal name		1 sig	0 signal	FP
		Limit switch ON		Yes	No	-
		Limit switch OF		No	Yes	-
		Limit switch ax	ndstill)	Yes	No	-
		Plus limit switch		Yes	No	-
	05	Minus limit swit		Yes	No	-
Dependency:	Refer to: p3340, p3342, p3343					
Note:	For bit $00=1$:					
	The limit switch enables motion.					
	For example, this bit can be used for interconnection with binector input p0840 (ON/OFF1).					
	For bit $01=0$: \quad					
	The drive cannot be moved as a result of the limit switch function (e.g. as a result of the switching-on inhibited).					
	For example, this bit can be used for interconnection with binector input p0848 (OFF3).					
	For bit 02 = 1:					
	The axis is at zero speed.					

2.2 List of parameters

For bit $04=1$:
The plus limit switch reached.
For bit $05=1$:
The minus limit switch reached.

p3820[0...n]	Friction characteristic value n0 / Friction n0		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	15.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 1st value pair of the friction characteristic.		
Dependency:	Refer to: p3830, p3845		

p3821[0...n]	Friction characteristic value $\mathbf{n 1} /$ Friction $\mathbf{n 1}$		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: $3 _1$	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	$0.00[\mathrm{rpm}]$	$210000.00[\mathrm{rpm}]$	30.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 2 nd value pair of the friction characteristic.		
Dependency:	Refer to: $\mathrm{p} 3831, \mathrm{p} 3845$		

p3822[0...n]	Friction characteristic value n2 / Friction n2		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	60.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 3rd value pair of the friction characteristic.		
Dependency:	Refer to: p3832, p384		

p3823[0...n]	Friction characteristic value n3 / Friction n3		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	120.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 4th value pair of the friction characteristic.		
Dependency:	Refer to: p3833, p3845		

p3824[0...n]	Friction characteristic value $\mathbf{n 4} /$ Friction $\mathbf{n 4}$		
	Access level: 2	Calculated: $p 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: $3 _1$	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	$0.00[\mathrm{rpm}]$	210000.00 [rpm]	150.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 5th value pair of the friction characteristic.		

Dependency:	Refer to: p3834, p3845		
p3825[0...n]	Friction characteristic value n5 / Friction n5		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	300.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 6th value pair of the friction characteristic.		
Dependency:	Refer to: p3835, p3845		
p3826[0...n]	Friction characteristic value n6 / Friction n6		
	Access level: 2	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	600.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 7th value pair of the friction characteristic.		
Dependency:	Refer to: p3836, p3845		
p3827[0...n]	Friction characteristic value n7 / Friction n7		
	Access level: 2	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	1200.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 8th value pair of the friction characteristic.		
Dependency:	Refer to: p3837, p3845		
p3828[0...n]	Friction characteristic value n8 / Friction n8		
	Access level: 2	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	1500.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the n coordinate of the 9th value pair of the friction characteristic.		
Dependency:	Refer to: p3838, p3845		
p3829[0...n]	Friction characteristic value n9 / Friction n9		
	Access level: 2	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	3000.00 [rpm]
Description:	The friction characteristic is defined by 10 value pairs.		
Dependency:	Refer to: p3839, p3845		

p3830[0...n]	Friction characteristic value M0 / Friction M0		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	-1000000.0000 [Nm]	1000000.0000 [Nm]	0.0000 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 1st value pair of the friction characteristic.		
Dependency:	Refer to: p3820, p3845		
p3831[0...n]	Friction characteristic value M1 / Friction M1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	-1000000.0000 [Nm]	1000000.0000 [Nm]	0.0000 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 2nd value pair of the friction characteristic.		
Dependency:	Refer to: p3821, p3845		
p3832[0...n]	Friction characteristic value M2 / Friction M2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	-1000000.0000 [Nm]	1000000.0000 [Nm]	0.0000 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 3rd value pair of the friction characteristic.		
Dependency:	Refer to: p3822, p3845		
p3833[0...n]	Friction characteristic value M3 / Friction M3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	-1000000.0000 [Nm]	1000000.0000 [Nm]	0.0000 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 4th value pair of the friction characteristic.		
Dependency:	Refer to: p3823, p3845		
p3834[0...n]	Friction characteristic value M4 / Friction M4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	-1000000.0000 [Nm]	1000000.0000 [Nm]	0.0000 [Nm]
Description:	The friction characteristic is defined by 10 value pairs. This parameter specifies the M coordinate of the 5 th value pair of the friction characteristic.		
Dependency:			

p3835[0...n]	Friction characteristic value M5 / Friction M5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	-1000000.0000 [Nm]	1000000.0000 [Nm]	0.0000 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 6th value pair of the friction characteristic.		
Dependency:	Refer to: p3825, p3845		
p3836[0...n]	Friction characteristic value M6 / Friction M6		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	-1000000.0000 [Nm]	1000000.0000 [Nm]	0.0000 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 7th value pair of the friction characteristic.		
Dependency:	Refer to: p3826, p3845		
p3837[0...n]	Friction characteristic value M7 / Friction M7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	-1000000.0000 [Nm]	$1000000.0000[\mathrm{Nm}]$	0.0000 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 8th value pair of the friction characteristic.		
Dependency:	Refer to: p3827, p3845		
p3838[0...n]	Friction characteristic value M8 / Friction M8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	-1000000.0000 [Nm]	$1000000.0000[\mathrm{Nm}]$	0.0000 [Nm]
Description:	The friction characteristic is defined by 10 value pairs.		
	This parameter specifies the M coordinate of the 9th value pair of the friction characteristic.		
Dependency:	Refer to: p3828, p3845		
p3839[0...n]	Friction characteristic value M9 / Friction M9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Func. diagram: 7010
	Min	Max	Factory setting
	-1000000.0000 [Nm]	$1000000.0000[\mathrm{Nm}]$	0.0000 [Nm]
Description:	The friction characteristic is defined by 10 value pairs. This parameter specifies the M coordinate of the 10th value pair of the friction characteristic.		
Dependency:	Refer to: p3829, p3845		

2.2 List of parameters

r3840.0... 8	CO/BO: Friction characteristic status word / Friction ZSW					
	Access level: 2		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Unit group: -		Unit selection: -		Func. diagram: 7010	
	Min		Max		Factory setting	
	-		-		-	
Description:	Display and BICO output for the status word of the friction characteristic.					
Bit field:	Bit Signal name			1 signal	0 signal	FP
		Friction chara		Yes	No	-
		Friction chara	ctivated	Yes	No	-
		Friction chara	mpleted	Yes	No	-
		Friction chara	orted	Yes	No	-
		Friction chara	direction	Yes	No	-
r3841	CO: Friction characteristic output / Frict outp					
	Access level: 2		Calculated: -		Data type: FloatingPoint32	
	Can be changed: -		Scaling: p2003		Dyn. index: -	
	Unit group: 7_1		Unit selection: p0505		Func. diagram: 7010	
	Min		Max		Factory setting	
	- [Nm]		- [Nm]		- [Nm]	
Description: Dependency:	Display and connector output for the torque of the friction characteristic dependent on the speed.					
	Refer to: p3842					
p3842	Friction characteristic activation / Frict act					
	Access level: 2		Calculated: -		Data type: Integer16	
	Can be changed: T		Scaling: -		Dyn. index: -	
	Unit group: -		Unit selection: -		Func. diagram: 7010	
	Min		Max		Factory setting	
	0		1		0	
Description:	Setting to activate and deactivate the friction characteristic.					
Value:	0 : Friction characteristic deactivated 1: Friction characteristic activated					
Dependency:	Refer to: r3841, p3845					
p3845	Friction characteristic record activation / Frict rec act					
	Access level: 2		Calculated: -		Data type: Integer16	
	Can be changed: T		Scaling: -		Dyn. index: -	
	Unit group: -		Unit selection: -		Func. diagram: 7010	
	Min		Max		Factory setting	
	0		3		0	
Description:	Setting for the friction characteristic record.					
	After the next switch-on command, the friction characteristic is automatically recorded.					
Value:	0 : Friction characteristic record deactivated 1: Friction char record activated for all directions 2: Friction char record activated for positive direction 3: Friction char record activated for negative direction					
Dependency:	When selecting the friction characteristic measurement, the drive data set changeover is suppressed.					
	For linear drives (refer to r 0108 bit 12) it is not permissible to carry out the friction characteristic measurement for mechanical systems that limit travel.					
Danger: 1	For drives with a mechanical system that limit the distance moved, it must be ensured that during recording, the friction characteristic is not reached. If this is not the case, then it is not permissible that the measurement is carried out.					
Notice:	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971, p0977).					

Note: \quad When the friction characteristic record is active, it is not possible to save the parameters (p0971, p0977). When the friction characteristic record is active (p3845 > 0), it is not possible to change p3820 ... p3829, p3830 ... p3839 and p3842.
When recording the friction characteristic, in addition to the friction, the motor losses are also determined (e.g. iron losses, eddy current losses and re-magnetizing losses). A differentiation is not made between these individual loss components. We recommend that a motor temperature sensor is used because torque deviations can also be emulated/mapped on the characteristic due to the thermal influence.

p3846[0...n]	Friction characteristic record ramp-up/ramp-down time / Frict rec t_RU/RD		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: 7010
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	Sets the ramp-up/ramp-down time of the ramp-up/ramp-down function generator to automatically record the friction characteristic.		
	The drive is accelerated from standstill (setpoint $=0$) up to the maximum speed/velocity (p 1082) in this time .		
Dependency:	Refer to: p3845		

p3847[0...n]	Friction characteristic record warm-up time / Frict rec t_warm		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Max
	Min	$3600.000[\mathrm{~s}]$	Fanc. diagram: 7010
	$0.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$	
Description:	Sets the warm-up time.		
	For an automatic trace (record) to start, the highest selected speed (p3829) is approached and this time is held. After		
	this, the measurement is started with the highest speed.		
Dependency:	Refer to: p3829, p3845		

p3856[0...n]	Compound braking current / Compound I_brake		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [\%]	250.00 [\%]	0.00 [\%]
Description:	Compound braking current is used to define the amount of DC current that is produced on stopping the motor during U / f operation to further increase the DC braking function.		
	Compound braking is a superimposition of the DC braking function with regenerative braking (net braking along the ramp) after OFF1 or OFF3. This permits braking with controlled motor frequency and minimum power input into the motor.		
	Effective braking without using additional hardware components is obtained by optimizing the ramp down time and compound braking.		
Dependency:	The compound braking current is only activated if the DC link voltage exceeds the threshold value in r1282.		
	Compound braking does not operate in the following cases:		
	- DC braking activated (p1230, r1239).		
	- motor is still not magnetized (e.g. for flying restart).		
	- vector control parameterized (p1300 >= 20).		
	- synchronous motor used (p0300 = 2xx).		
Notice:	Generally, increasing the braking current improves the braking effect when stopping the motor. However, if the value is set too high, then the drive can be tripped (shut down) as a result of overcurrent or ground fault.		
	Recommendation: p3856 < 100 \% x (r0209-r0331) / p0305 / 2		
	Compound braking generates a current in the motor with a ripple manifesting the rotational frequency. The higher the braking current is set, the higher the resulting ripple, especially when the Vdc_max control is simultaneously active (refer to p1280).		

2.2 List of parameters

Note:	The parameter value is entered relative to the rated motor current $(\mathrm{p} 0305)$.
Compound braking is deactivated with $\mathrm{p} 3856=0 \%$.	

r3859.0	CO/BO: Compound braking/DC quantity control status word / Comp-br/DC_ctr ZSW			
	Access level: 3	Calculated: -	Data type: Un	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagra	
	Min	Max	Factory setti	
	-	-	-	
Description:	Display and connector output for the status word of the compound braking and DC quantity control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Compound braking active	Yes	No	-
Dependency:	Refer to: p3856			
p3900	Completion of quick commissioning / Compl quick_comm			
	Access level: 1	Calculated: -	Data type: In	
	Can be changed: $\mathrm{C}(1)$	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagra	
		Max	Factory setti	
		3	0	
Description:	Exits quick commissioning ($\mathrm{p} 0010=1$) with automatic calculation of all parameters of all existing drive data sets that depend on the entries made during quick commissioning.			
	p3900 $=1$ initially includes a parameter reset (factory setting, the same as p0970 = 1) for all parameters of the drive object; however, without overwriting the entries made during the quick commissioning.			
	The interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p15 and p1500 are re-established and all of the dependent motor, open-loop and control-loop control parameters are calculated (corresponding to p0340 = 1).			
	p3900 $=2$ includes the restoration of the interconnections of PROFIBUS PZD telegram selection (p0922) and the interconnections via p15 and p1500 and the calculations corresponding to p0340 = 1 .			
	p3900 $=3$ only includes the calculations associated with the motor, open-loop and closed-loop control parameters corresponding to p0340 $=1$.			
Value:	0 : \quad No quick parameterization			
	1: Quick parameterization	parameter reset		
	2: Quick parameterization (for BICO and motor param		
		tor parameters (only)		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.			
Note:	When the calculations have been completed, p3900 and p0010 are automatically reset to a value of zero.			
	When calculating motor, open-loop and closed-loop control parameters (such as for p0340 = 1) parameters associated with a selected Siemens catalog motor are not overwritten.			
	If a catalog motor has not been selected (p 0300), then the following parameters are reset with p3900 >0 in order to restore the situation that applied when commissioning the drive for the first time:			
	induction motor: p0320, p0352, p0362 ... p0369, p0604, p0605			
	synchronous motor: p0352, p0604, p0605			

r3925[0...n]	Identification final display / Ident final_disp				
	Access level: 3		Calculated: p0340 = 1	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dyn. index: DDS, p0180	
	Unit group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-	-		-	
Description:	Displays the commissioning steps that have been carried out.				
Bit field:		Signal name	1 signal	0 signal	FP
		Motor/control parameters calculated (p0340 $=1, p 3900>0)$	Yes	No	-
	02	Motor data identification carried out at standstill (p1910 = 1)	Yes	No	-
	03	Rotating measurement carried out (p1960 = 1, 2)	Yes	No	-
		Identified motor data are automatically backed up	Yes	No	-
	11	Automatic parameterization as Standard Drive Control	Yes	No	-
		Automatic parameterization as Dynamic Drive Control	Yes	No	-
		Drive Control	Yes	No	-
		Equivalent circuit diagram parameters changed	Yes	No	-
		Cable resistance measured	Yes	No	-
		18 Circle identification executed	Yes	No	-
Note:	The individual bits are only set if the appropriate action has been initiated and successfully completed.				The identification final display is reset when changing the type plate parameters.
r3926[0...n]	Voltage generation alternating base voltage amplitude / U_gen altern base				
	Access level: 4		Calculated: -	Data type: FloatingPoint32	
	Can be changed: -		Scaling: -	Dyn. index: MDS	
	Unit group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-[V] -[V]			- [V]	
Description:	Displays the base voltage for the alternating voltage in the context of motor data identification. 0 :				
	No alternating voltages. The function is deactivated.				
	<0 :				
	Automatic determination of the base voltage and wobbulation / self-setting based on the converter and the connected motor.				
	Otherwise:				
	Base voltage for alternating current generation in volts (wobbulation active).				

2.2 List of parameters

2.2 List of parameters

p3985	Master control mode selection / PcCtrl mode select		
	Access level: 3	Calculated: -	Data type: Integer16

For bit 04:
Activates the torque pre-control for the basic positioner (EPOS).
For bit 05:
The maximum setpoint acceleration for the basic positioner (EPOS) is determined based on the estimated moment of inertia. This is realized by activating the bit once.
The prerequisite is that the drive pulses are inhibited, and the moment of inertia was previously determined.
For bit 06:
The speed controller gain set in p1460 is not changed when calculating the controller data.

r5311[0...n]	Moment of inertia precontrol status word / J_prectrl ZSW		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting

Description: Displays the status word for the moment of inertia precontrol
Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	New measuring points are available	Yes	No	No
01	New parameters being calculated	Yes	No	-
02	Moment of inertia precontrol active	Yes	No	-
03	Calculation of positive coefficients completed	Yes	No	-
04	Calculation of negative coefficients completed	Yes	No	-
05	Results are being written to parameter	Yes		-

2.2 List of parameters

Dependency: The function module "Moment of inertia estimator" (r0108.10) must be activated for the "Moment of inertia precontrol" function.
Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)
Refer to: p5310, p5312, p5313, p5314, p5315

p5312[0...n]	Moment of inertia precontrol linear positive / J_est lin pos		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-340.28235E36 [${ }^{2}$]	340.28235 E 36 [${ }^{2}$]	0.000000 [${ }^{2}$]
Description:	Sets the linear coefficients for moment of inertia precontrol in the positive direction when the moment of inertia estimator is active.		
	The estimated moment of inertia is obtained according to the following formula:		
	Moment of inertia (J) = linear coefficient (p5312) * load torque + constant coefficient (p5313)		
Dependency:	The function module "Moment of inertia estimator" (r0108.10) must be activated for the "Moment of inertia precontrol" function.		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p5310, r5311, p5313, p5314, p5315		

p5313[0...n]	Moment of inertia precontrol constant positive / J_est const pos		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 25_1	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	-340.28235E36 [kgm ${ }^{2}$]	340.28235 E 36 [kgm^{2}]	0.000000 [kgm^{2}]
Description:	Sets of the constant coefficients for moment of inertia precontrol in the positive direction when the moment of inertia estimator is active.		
	The estimated moment of inertia is obtained according to the following formula:		
	Moment of inertia (J) = linear coefficient (p5312) * load torque + constant coefficient (p5313)		
Dependency:	The function module "Moment of inertia estimator" (r0108.10) must be activated for the "Moment of inertia precontrol" function.		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p5310, r5311, p5312, p5314, p5315		

p5314[0...n]	Moment of inertia precontrol linear negative / J_est lin neg		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-340.28235E36 [${ }^{2}$]	340.28235 E 36 [s^{2}]	$0.000000\left[\mathrm{~s}^{2}\right]$
Description:	Sets the linear coefficients for moment of inertia precontrol in the negative direction when the moment of inertia estimator is active.		
	The estimated moment of inertia is obtained according to the following formula:		
	Moment of inertia (J) = linear coefficient (p5314) * load torque + constant coefficient (p5315)		
Dependency:	The function module "Moment of inertia estimator" (r0108.10) must be activated for the "Moment of inertia precontrol" function.		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p5310, r5311, p5312, p5313, p5315		

p5315[0...n]	Moment of inertia precontrol constant negative / J_est const neg		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Unit group: 25_1	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	-340.28235E36 [kgm^{2}]	340.28235 E 36 [kgm^{2}]	0.000000 [kgm^{2}]
Description:	Sets the constant coefficients for moment of inertia precontrol in the negative direction when the moment of inertia estimator is active.		
	The estimated moment of inertia is obtained according to the following formula:		
	Moment of inertia (J) = linear coefficient (p5314) * load torque + constant coefficient (p5315)		
Dependency:	The function module "Moment of inertia estimator" (r0108.10) must be activated for the "Moment of inertia precontrol" function.		
	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p5310, r5311, p5312, p5313, p5314		
p5316[0...n]	Moment of inertia precontrol change time moment of inertia / J_prectrl t J		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10.00 [ms]	5000.00 [ms]	500.00 [ms]
Description:	Sets the change time for the moment of inertia for the moment of inertia precontrol.		
	Lower values mean that faster changes are possible.		
	For a higher value, this estimated value is smoothed more significantly.		
Dependency:	Not visible with application class: "Standard Drive Control" (SDC, p0096 = 1)		
	Refer to: p1400, p1560, p1562		
p5350[0...n]	Mot_temp_mod 1/3 boost factor at standstill / Standst boost_fact		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Unit group: -	Unit selection: -	Func. diagram: 8017
	Min	Max	Factory setting
	1.0000	2.0000	2.0000
Description:	Sets the boost factor for the copper losses at standstill for motor temperature models 1 and 3 .		
	The entered factor is active for speed $n=0$ [rpm].		
	This factor is linearly reduced down to 1 between speeds $\mathrm{n}=0 \ldots 1$ [rpm].		
	The following values are required to calculate the boost factor:		
	- stall current (1_0, p0318, catalog value)		
	- thermal stall current (1_th0, catalog value)		
	The boost factor is calculated as follows:		
	- p5350 = (I_0 / I_th0)^2		
Dependency:	Refer to: p0318, p0612, p5390, p5391		
	Refer to: F07011, A07012, A07014		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	Temperature model $1(\mathrm{l} 2 \mathrm{t})$:		
	The following applies for firm - parameter p5350 is not activ The following applies from firm - parameter p5350 becomes	sion <4.7 SP6 or p0612.8 nally, a fixed boost factor of ersion 4.7 SP6 and p0612.8 described above.	sed as basis for the calculation.

2.2 List of parameters

2.2 List of parameters

Dependency:	Refer to: p5391
	Refer to: F07011, A07012, A07014
Note:	For firmware version < 4.7 SP6: parameter p5391 is not visible for users (this is a Siemens internal parameter)

r5600	Pe energy-saving mode ID / Pe mode ID		
G120C_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2381, 2382
	Min	Max	Factory setting
	0	255	-
Description:	Displays the PROFlenergy mode ID of the effective energy-saving mode.		
Value:	0: POWER OFF		
	2: Energy-saving mode 2		
	240: Operation		
	255: Ready		
Note:	Pe: PROFlenergy profiles		

p5602[0...1]	Pe energy-saving mode pause time minimal / Pe mod t_pause min		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2381
	Min	Max	Factory setting
	300000 [ms]	4294967295 [ms]	[0] 300000 [ms]
			[1] 480000 [ms]
Description:	Sets the minimum possible pause time for the energy-saving mode.		
	The value is the sum of the following times:		
	- Energy-saving mode transition time		
	- Operating state transition time regular		
	- Energy-saving mode, time of minimum stay		
Index:	$\begin{aligned} & {[0]=\text { Reserved }} \\ & {[1]=\text { Mode } 2} \end{aligned}$		
Note:	It is not permissible that the value is less than the sum of the "energy-saving mode transition time" and the "operating state transition time" (system properties).		
	Pe: PROFlenergy profiles		

p5611	Pe energy-saving properties general / Pe properties gen						
G120C_PN		ss level: 3	Calculated: -		Data type: Unsigned32		
		be changed: T	Scaling: -		Dyn. index: -		
		group: -	Unit selection: -		Func. diagram: 2381, 2382		
	Min		Max		Factory setting		
	-		-		0000 bin		
Description:	Sets the general properties for energy-saving.						
Bit field:		Signal name		1 signal	0 signal	FP	
				Yes	No	-	
		energy-saving mode		Yes	No	-	
		Trans to energy-saving mode from PROFIdrive state S3/4 poss		Yes	No	-	
Note:	Pe: PROFlenergy profiles						
	PROFIdrive state S4: operation						
p5612[0...1]	Pe energy-saving properties mode-dependent / Pe properties mod						
G120C_PN	Access level: 3		Calculated: -		Data type: Unsigned32		
	Can be changed: T		Scaling: -		Dyn. index: -		
	Unit group: -		Unit selection: -		Func. diagram: -		
	Min		Max		Factory setting		
	-		for		[0] 0110 bin		
					[1] 0000 bin		
Description:	Sets the mode-dependent properties for energy-saving.						
Index:	$\begin{aligned} & {[0]=\text { Reserved }} \\ & {[1]=\text { Mode } 2} \end{aligned}$						
Bit field:		Signal name Reserved		$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$	$0 \text { signal }$No	FP	
Note:	Pe: PROFlenergy profiles						
r5613.0... 1	CO/BO: Pe energy-saving active/inactive / Pe save act/inact						
G120C_PN	Access level: 3		Calculated: -			Data type: Unsigned8	
	Can be changed: -		Scaling: -		Dyn. index: -		
	Unit group: -		Unit selection: -		Func. diagram: 2382		
	Min		Max		Factory setting		
	-		-		-		
Description:	Display and binector output for the state display PROFlenergy energy saving active or inactive.						
Bit field:		Signal name Pe active Pe inactive	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$		$\begin{aligned} & 0 \text { signal } \\ & \text { No } \\ & \text { No } \end{aligned}$	FP	
Note:	Bit 0 and bit 1 are inverse of one another. Pe: PROFlenergy profiles						
p5614	BI: Pe set switching-on inhibited signal source / Pe sw-on_inh s_src						
G120C_PN	Access level: 3		Calculated: -		Data type: U32 / Binary		
	Can be changed: T		Scaling: -		Dyn. index: -		
	Unit group: -		Unit selection: -		Func. diagram: 2382		
	Min				Factory setting		
Description:	Sets the signal source to set in the PROFIdrive state S1 "switching-on inhibited".						
Dependency:	Refer to: r5613						
Note:	Pe: PROFlenergy profiles						

r7758[0...19]	KHP Control Unit serial number / KHP CU ser_no		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number of the Control Unit.		
	The individual characters of the serial number are displayed in the ASCII code in the indices.		
	For the commissioning software, the ASCII characters are displayed uncoded.		
Dependency:	Refer to: p7765, p7766, p7767, p7768		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:			

p7759[0...19]	KHP Control Unit reference serial number / KHP CU ref ser_no		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Sets the reference serial number for the Control Unit.		
	Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt the project to the modified hardware.		
Dependency:	Refer to: p7765, p7766, p7767, p7768		
Note:	KHP: Know-How Protection		
	- the OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".		
	- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.		

r7760.0... 12	CO/BO: Write protection/know-how protection status / Wr_prot/KHP stat					
	Access level: 3		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Unit group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the status for the write protection and know-how protection.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Write protectio		Yes	No	-
		Know-how pr		Yes	No	-
		Know-how pr	ily withdrawn	Yes	No	-
		Know-how pr	deactivated	Yes	No	-
		Extended cop		Yes	No	-
		Basic copy pr		Yes	No	-
		Trace and me diagnostic pu		Yes	No	-
		Reserved Sie		Yes	No	-
Dependency:	Refer to: p7761, p7765, p7766, p7767, p7768					
Note:	KHP: Know-How Protection					
	For bit 00:					
	Write protection can be activated/deactivated via p7761 on the Control Unit.					
	For bit 01:					
	The know-how protection can be activated by entering a password (p7766 ... p7768).					
	For bit 02:					
	If it has already been activated, know-how protection can be temporarily deactivated by entering the valid passwo in p7766. In this case, bit $1=0$ and bit $2=1$ offset.					

2.2 List of parameters

p7764[0...n]	KHP OEM exception list / KHP OEM excep list		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: p7763
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	65535	[0] 7766
			[1...499] 0
Description:	OEM exception list (p7764[0...n] for setting parameters that should be excluded from know-how protection. p7764[0...n], with $n=p 7763-1$		
Dependency:	The number of indices depends on p7763.		
	Refer to: p7763		
Note:	KHP: Know-How Protection		
	Even if know-how protection is set, parameters in this list can be read and written to.		

p7765	KHP configuration / KHP config					
	Access level: 3		Calculated: -		Data type: Unsigned16	
	Can be changed: U, T		Scaling: -		Dyn. index: -	
	Unit group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-		-		0000 bin	
Description:	Configuration settings for know-how protection.					
	For bit 00, 01:					
	When KHP is activated, this means that the OEM can define whether the parameters and DCC data encrypted on the memory card should be protected before using on other memory cards/Control Units.					
	For bit 02:					
	This means that the OEM can define whether it is possible or not to trace the drive data using the device trace function although KHP is activated.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Extended copy pr memory card and	ed to the	Yes	No	-
		Basic copy protec memory card		Yes	No	-
		Permit trace and diagnostic purpos	ctions for	Yes	No	-
Dependency:	Refer to: p7766, p7767, p7768					
Note:	KHP: Know-How Protection					
	For copy protection, the serial numbers of the memory card and/or Control Unit are checked.					
	The memory card copy protection and preventing data to be traced are only effective when the know-how protection has been activated.					
	For bit 00, 01:					
	If both bits are inadvertently set to 1 (e.g. at the BOP), then the setting of bit 0 applies.					
	There is no copy protection if both bits are set to 0 .					

p7766[0...29]	KHP password input / KHP passw input		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	-	Factory setting
Description:	-	-	
	Sets the password for know-how protection.		
	Example of a password:		
	$123 a B c=495051976699$ dec (ASCII characters)		
	$[0]=$ character 1 (e.g. 49 dec)		

2.2 List of parameters

p7775	NVRAM data backup/import/delete / NVRAM backup		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}, \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	17	0
Description:	Setting to backup/import/delete NVRAM data.		
	NVRAM data are non-volatile data in the device (e.g. fault buffer).		
	For NVRAM data actions, the following data are excluded:		
	- crash diagnostics		
	- CU operating hours counter		
	- CU temperature		
	- safety logbook		
Value:	0 : Inactive		
	1: NVRAM data backup to memory card		
	2: Import NVRAM data from the memory card		
	3: Delete NVRAM data in the device		
	10: Error when clearing		
	11: Error when backing up, memory card not available		
	12: Error when backing up, insufficient memory space		
	13: Error when backing up		
	14: Error when importing, memory card not available		
	15: Error when importing, checksum error		
	16: Error when importing, no NVRAM data available		
	17: Error when importin		
Notice:	For value = 2, 3:		
	These actions are only possible when pulses are inhibited.		
Note:	After the action has been successfully completed, the parameter is automatically set to zero.		
	The actions importing and deleting NVRAM data immediately initiate a warm restart.		
	If the procedure was not successfully comple		

r7843[0...20]	Memory card serial number / Mem_card ser.no		
	Access level: 1	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number of the memory card.		
	The individual characters of the serial number are displayed in the ASCII code in the indices.		
Notice:Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
	Example: displaying the serial number for a memory card:		
Note:	r7843[0] = 49 dec --> ASCII characters = "1" --> serial number, character 1		
	r7843[1] = 49 dec --> ASCII characters = "1" --> serial number, character 2		
	r7843[2] = 49 dec --> ASCII characters = "1" --> serial number, character 3		
	r7843[3] = 57 dec --> ASCII characters = "9" --> serial number, character 4		
	r7843[4] = 50 dec --> ASCII characters = "2" --> serial number, character 5		
	r7843[5] = 51 dec --> ASCII characters = "3" --> serial number, character 6		
	r7843[6] = 69 dec --> ASCII characters = "E" --> serial number, character 7		
	r7843[7] = 0 dec --> ASCII characters = " " --> serial number, character 8		
	r7843[19] $=0$ dec --> ASCII characters = " " --> serial number, character 20		
	r7843[20] $=0 \mathrm{dec}$		
	Serial number $=111923 \mathrm{E}$		

r8540.0... 15	BO: STW1 from IOP in the manual mode / STW1 IOP			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	-	
Description:	For the manual mode: the STW1 (control word 1) entered from the IOP is displayed.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON/OFF1	Yes	No	-
	01 OC / OFF2	Yes	No	-
	02 OC / OFF3	Yes	No	-
	03 Reserved	Yes	No	-
	04 Reserved	Yes	No	-
	05 Reserved	Yes	No	-
	06 Reserved	Yes	No	-
	07 Acknowledge fault	Yes	No	-
	08 Jog bit 0	Yes	No	3030
	09 Jog bit 1	Yes	No	3030
	10 Reserved	Yes	No	-
	11 Direction reversal (setpoint)	Yes	No	-
	12 Reserved	Yes	No	-
	13 Reserved	Yes	No	-
	14 Reserved	Yes	No	-
	15 Reserved	Yes	No	-
r8541	CO: Speed setpoint from the IOP in the manual mode / n_set IOP			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: -	Scaling: p2000	Dyn. index: -	
	Unit group: 3_1	Unit selection: p0505	Func. diagram: -	
	Min	Max	Factory setting	
	- [rpm]	- [rpm]	- [rpm]	
Description:	For the manual mode: the speed setpoint entered from the IOP is displayed.			
p8542[0...15]	BI: Active STW1 in the BOP/IOP manual mode / STW1 act OP			
	Access level: 3	Calculated: -	Data type: U32 / Binary	
	Can be changed: T	Scaling: -	Dyn. index: -	
	Unit group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	[0] 8540.0	
			[1] 8540.1	
			[2] 8540.2	
			[3] 8540.3	
			[4] 8540.4	
			[5] 8540.5	
			[6] 8540.6	
			[7] 8540.7	
			[8] 8540.8	
			[9] 8540.9	
			[10] 8540.10	
			[11] 8540.11	
			[12] 8540.12	
			[13] 8540.13	
			[14] 8540.14	
			[15] 8540.15	
Description:	For the manual mode: Setting of the	signal sources for STW1	1).	

2.2 List of parameters

Index:	$\begin{aligned} & {[0]=\text { ON/OFF1 }} \\ & {[1]=\text { OC / OFF2 }} \\ & {[2]=\text { OC / OFF3 }} \\ & {[3]=\text { Enable operation }} \\ & {[4]=\text { Enable ramp-function generator }} \\ & {[5]=\text { Continue ramp-function generator }} \\ & {[6]=\text { Enable speed setpoint }} \\ & {[7]=\text { Acknowledge fault }} \\ & {[8]=\text { Jog bit } 0} \\ & {[9]=\text { Jog bit } 1} \\ & {[10]=\text { Master control by PLC }} \\ & {[11]=\text { Direction reversal (setpoint }} \\ & {[12]=\text { Enable speed controller }} \\ & {[13]=\text { Motorized potentiometer raise }} \\ & {[14]=\text { Motorized potentiometer lower }} \\ & {[15]=\text { CDS bit } 0} \end{aligned}$

p8543	CI: Active speed setpoint in the BOP/IOP manual mode / N_act act OP		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	8541[0]
Description:	For the manual mode: Sets the signal source for the speed setpoint.		
p8552	IOP speed unit / IOP speed unit		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	2	2
Description:	Sets the unit for displaying and entering speeds.		
Value:	$\begin{array}{ll} \text { 1: } & \mathrm{Hz} \\ \text { 2: } & \mathrm{rpm} \end{array}$		

p8558	BI: Select IOP manual mode / Sel IOP man mode		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0

r8570[0...39]	Macro drive object / Macro DO		
	Access level: 1	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Maxit selection: -	Func. diagram: -
	Min	-	Factory setting
	-	-	
Description:	Displays the macro file saved in the appropriate directory on the memory card/device memory.		
Dependency:	Refer to: p0015		
Note:	For a value $=9999999$, the following applies: The read operation is still running.		

p8603	CAN COB-ID Emergency Message / COB-ID EMCY Msg		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the COB-ID for the emergency message (error telegram). It corresponds to the CANopen objects:		
Note:	If, when downloading, the pre-set value 0 is downloaded, then the CANopen pre-set value 80 hex + Node-ID is automatically set.		
	Online, the value 0 is rejected as, according to the CANopen Standard, COB-ID 0 is not permitted here.		
	The changeover of the node ID using the hardware switch at the Control Unit or per software has no effect on the COB-ID EMCY. The saved value remains effective.		
p8604[0...1]	CAN life guarding / Life guarding		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0		0
Description:	Sets the life guarding parameter for the following CANopen objects:		
	- 100C hex: Guard Time		
	- 100D hex: Life Time Factor		
	The life time is derived by multiplying guard time by the life time factor.		
Index:	[0] = Time interval [ms] for the life time [1] = Factor for the lifetime		
Dependency:	Refer to: p8606		
	Refer to: F08700		
Note:	For p8604[0] $=0$ and/or p8604[1] = 0 , the life guarding event service (monitoring the node guarding, fault F08700 with fault value $=2$) is deactivated.		
	The node guarding protocol is active without the life guarding event service, if the heartbeat protocol is deactivated (p8606 = 0).		

p8606	CAN Producer Heartbeat Time / Prod Heartb Time		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	65535 [ms]	0 [ms]
Description:	Sets the time [ms] to cyclically send heartbeat telegrams.		
	The smallest cycle is 100 ms .		
	For p8606 $=0$, heartbeat telegrams are not sent.		
Dependency:	Refer to: p8604		
Note:	Corresponds to the CANopen object 1017 hex.		
	Activating the heartb	matically deactivat	

p8608[0...1]	CAN Clear Bus Off Error / Clear bus off err		
G120C_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	As a result of a Bus Off error, the CAN controller is set into the initialization state.		
	Index 0:		
	The CAN controller is manually started after resolving the cause of the error with p8608[0] $=1$.		
	Index 1:		
	The automatic CAN bus start function is activated using p8608[1] $=1$.		
	At 2 second intervals, the CAN controller is automatically restarted until the cause of the error has been resolved and a CAN connection has been established.		
Value:	0 : Inactive 1: Start CAN controller		
Index:	[0] = Manual controller start function [1] = Activating the automatic controller start function		
Note:	For index 0 :		
	This parameter is automatically reset to 0 after start.		
p8609[0...1]	CAN Error Behavior / Error behavior		
G120C_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2	1
Description:	Sets the behavior of the CAN node referred to the communications error or equipment fault.		
Value:	0: Pre-operational 1: No change 2: Stopped		
Index:	[0] = Behavior for communication errors [1] = Behavior for device faults		
Note:	Corresponds to the CAN	1029 hex.	

2.2 List of parameters

r8610[0...1]	CAN First Server SDO / First server SDO		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the identifier (client/server and server/client) of the SDO channel.		
Index:	[0] = COB-ID from the client to the server [1] = COB-ID from the server to the client		
Note:	Corresponds to the CANopen object 1200 hex.		
	SDO: Service Data Object		
p8611[0...82]	CAN Pre-defined Error Field / Pre_def err field		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	FFFF 1000 hex	0000 hex
Description:	Displays the Pre-defined Error Field of the CAN node. It includes the number of all errors that have occurred, the number of errors that have occurred for each drive and the errors according to their history.		
	The first 16 bits represent the CANopen error code and the second 16 bits the SINAMICS error code. Index 1 has the same structure - however, the drive object ID is in the second 16 bits instead of the SINAMICS error code.		
	CANopen error code:		
	0000 hex: No error present.		
	8110 hex: Alarm A08751 present.		
	8120 hex: Alarm A08752 present.		
	8130 hex: Alarm A08700(F) with alarm value $=2$ present.		
	1000 hex: Generic error 1 present (there is at least one fault outside the range 8700 ... 8799)		
	1001 hex: Generic error 2 present (there is at least one alarm in the range 8700 ... 8799 with the exception of A08751, A08752, A08700)		
	All drive objects are acknowledged by writing the value 0 to index 0 . As soon as a fault has been acknowledged or an alarm cleared, then it is also cleared from the fault list.		
Index:	[0] = Number of all faults in the drive unit		
	[1] = Most recent drive number / fault number		
	[2] = Number of faults drive 1		
	[3] = Fault 1/ drive 1		
	[4] = Fault 2/ drive 1		
	[5] = Fault 3/ drive 1		
	[6] = Fault 4/ drive 1		
	[7] = Fault 5/ drive 1		
	$[8]=$ Fault $6 /$ drive 1Corresponds to the CANopen object 1003 hex.		
Note:			

2.2 List of parameters

p8623[0...7]	CAN Bit Timing selection / Bit timing select		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	000F 7FFF hex	[0] 1405 hex
			[1] 1605 hex
			[2] 1C05 hex
			[3] 1COB hex
			[4] 1C17 hex
			[5] 1C3B hex
			[6] 00021 C 15 hex
			[7] 0004 1C2B hex
Description:	Sets the bit timing for the C_CAN controller to the associated and selected bit rate (p8622).		
	Bits are distributed to the following parameters of the C_CAN controller in p8623[0...7]:		
	Bit 0 ... 5: BRP (Baud Rate Prescaler)		
	Bit 6 ... 7: SJW (Synchronization Jump Width)		
	Bit 8 ... 11: TSEG1 (Time Segment 1, before the sampling point)		
	Bit $12 \ldots$ 14: TSEG2 (Time Segment 2, after the sampling point)		
	Bit 15: Reserved		
	Bit 16 ... 19: BRPE (Baud Rate Prescaler Extension)		
	Bit 20 ... 31: Reserved		
	Example:		
	Bit rate $=20 \mathrm{kbit} / \mathrm{s}$--> p8622 = 6 --> associated bit timing is in p8623[6] --> 0001 2FB6		
Index:	Use the factory setting when setting the bit timing.		
	[0] $=1 \mathrm{Mbit} / \mathrm{s}$		
	[1] = $800 \mathrm{kbit} / \mathrm{s}$		
	[2] $=500 \mathrm{kbit} / \mathrm{s}$		
	[3] = $250 \mathrm{kbit} / \mathrm{s}$		
	[4] $=125 \mathrm{kbit} / \mathrm{s}$		
	[5] $=50 \mathrm{kbit} / \mathrm{s}$		
	[6] $=20 \mathrm{kbit} / \mathrm{s}$		
	$[7]=10 \mathrm{kbit} / \mathrm{s}$		
Dependency:	Refer to: p8622		
Note:	The parameter is not influenced by setting the factory setting.		
p8630[0...2]	CAN virtual objects / Virtual objects		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	65535	0
Description:	Activating access to parameters via manufacturer-specific CANopen objects and setting for the subindex area (index 1) and the parameter area (index 2) when using virtual objects.		
	This means that it is possible to access all SINAMICS parameters via CAN.		
	Index 0:		
	0 : Not possible to access virtual CANopen objects		
	1: Possible to access virtual CANopen objects		
	Index 1 (sub-index area):		
	0: 0 ... 255		
	1: $256 \ldots 511$		
	2: $512 \ldots 767$		
	3: 768 ... 1023		

p8685	CAN NMT states / NMT states		
G120C_CAN	Calculated: -		
	Access level: 3	Scaling: -	Data type: Integer16

p8703[0...1]	CAN Receive PDO 4 / Receive PDO 4		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9204, 9206
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex
			[1] 00FE hex
Description:	Sets the communication parameters for CANopen Receive Process Data Object 4 (RPDO 4).		
Index:	[0] = PDO COB-ID		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANopen object 1403 hex.		
	Transmission types 0, 1, FE and FF can be set.		
	PDO: Process Data Object		

p8704[0...1]	CAN Receive PDO 5 / Receive PDO 5		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9204
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex
			[1] 00FE hex
Description:	Sets the communication parameters for CANopen Receive Process Data Object 5 (RPDO 5).		
Index:	[0] = PDO COB-ID		
	[1] = PDO transmission type		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANopen object 1404 hex.		
	Transmission types 0, 1, FE and FF can be set.		
	PDO: Process Data Object		

p8705[0...1]	CAN Receive PDO 6 / Receive PDO 6
G120C_CAN	Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: C(3), T Scaling: - Dyn. index: - Unit group: - Unit selection: - Func. diagram: 9204 Min Max Factory setting 0000 hex 8000 06DF hex $[0] 800006 \mathrm{DF}$ hex $[1] 00$ FE hex
Description: Index: Dependency: Note:	Sets the communication parameters for CANopen Receive Process Data Object 6 (RPDO 6). [0] = PDO COB-ID [1] = PDO transmission type A valid COB-ID can only be set for the available (existing) channel. Corresponds to the CANopen object 1405 hex. Transmission types 0, 1, FE and FF can be set. PDO: Process Data Object
$\begin{aligned} & \text { p8706[0...1] } \\ & \text { G120C_CAN } \end{aligned}$	CAN Receive PDO 7 / Receive PDO 7 Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: C(3), T Scaling: - Dyn. index: - Unit group: - Unit selection: - Func. diagram: 9204 Min Max Factory setting 0000 hex 800006 DF hex $[0] 800006 \mathrm{DF}$ hex $[1] 00 \mathrm{FE}$ hex
Description: Index: Dependency: Note:	Sets the communication parameters for CANopen Receive Process Data Object 7 (RPDO 7). [0] = PDO COB-ID [1] = PDO transmission type A valid COB-ID can only be set for the available (existing) channel. Corresponds to the CANopen object 1406 hex. Transmission types 0, 1, FE and FF can be set. PDO: Process Data Object

p8707[0...1]	CAN Receive PDO 8 / Receive PDO 8		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9204
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex [1] 00FE hex
Description: Index:	Sets the communication parameters for CANopen Receive Process Data Object 8 (RPDO 8). [0] = PDO COB-ID [1] = PDO transmission type		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANo Transmission types $0,1, F$ PDO: Process Data Objec	1407 hex. can be set.	

p8710[0...3]	CAN Receive Mapping for RPDO 1 / Mapping RPDO 1		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 9204, 9206
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 1 (RPDO 1).		
Index:	[0] = Mapped object 1		
	[1] = Mapped object 2		
	[2] = Mapped object 3		
	[3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1600 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid		

p8711[0...3]	CAN Receive Mapping for RPDO 2 / Mapping RPDO 2		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9204, 9206
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 2 (RPDO 2).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1601 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8712[0...3]	CAN Receive Mapping for RPDO 3 / Mapping RPDO 3		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9204, 9206
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 3 (RPDO 3).		
Index:	[0] = Mapped object 1		
	[1] = Mapped object 2		
	[2] = Mapped object 3		
	[3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1602 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8713[0...3]	CAN Receive Mapping for RPDO 4 / Mapping RPDO 4		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9204, 9206
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 4 (RPDO 4).		
Index:	$[0]=$ Mapped object 1		
	$[1]=$ Mapped object 2		

2.2 List of parameters

$[2]=$ Mapped object 3
$[3]=$ Mapped object 4
Corresponds to the CANopen object 1603 hex.
Dummy mapping not supported.
The parameter can only be written online when the associated COB ID in p870x is set as invalid.

p8714[0...3]	CAN Receive Mapping for RPDO 5 / Mapping RPDO 5		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9204
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex

Description: Sets the mapping parameters for CANopen Receive Process Data Object 5 (RPDO 5).
Index: [0] = Mapped object 1
[1] = Mapped object 2
[2] = Mapped object 3
[3] = Mapped object 4
Note: Corresponds to the CANopen object 1604 hex.
Dummy mapping not supported.
The parameter can only be written online when the associated COB ID in p870x is set as invalid.

p8715[0..3]	CAN Receive Mapping for RPDO 6 / Mapping RPDO 6		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9204
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 6 (RPDO 6).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1605 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8716[0..3]	CAN Receive Mapping for RPDO 7 / Mapping RPDO 7		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9204
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 7 (RPDO 7).		
Index:	$[0]=$ Mapped object 1 $[1]=$ Mapped object 2 $[2]=$ Mapped object 3 $[3]=$ Mapped object 4		
Note:	Corresponds to the CANopen object 1606 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8717[0...3]	CAN Receive Mapping for RPDO 8 / Mapping RPDO 8		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9204
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 8 (RPDO 8).		
Index:	$[0]=$ Mapped object 1 $[1]=$ Mapped object 2 $[2]=$ Mapped object 3 $[3]=$ Mapped object 4		
Note:	Corresponds to the CANopen object 1607 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8720[0...4]	CAN Transmit PDO 1 / Transmit PDO 1		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208, 9210
	Min	Max	Factory setting
	0000 hex	C000 06DF hex	[0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication parameters for CANopen Transmit Process Data Object 1 (TPDO 1).		
Index:	[0] = PDO COB-ID		
	[1] = PDO transmission type		
	[2] = Inhibit time (in $100 \mu \mathrm{~s}$)		
	[3] = Reserved		
	[4] = Event timer (in ms)		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Notice:	For inhibit time and event timer, the following apply:		
	A value that is not a multiple integer of the CANopen sampling time is rounded-off.		
Note:	Corresponds to the CANopen object 1800 hex.		
	Transmission types 0, $1 \ldots$ F0, FE and FF can be set.		
	p2048: CANopen sampling time		
	PDO: Process Data Object		

p8721[0...4]	CAN Transmit PDO 2 / Transmit PDO 2		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208, 9210
	Min	Max	Factory setting
	0000 hex	[0] C000 06DF hex	
		[1] 00FE hex	
		[2] 0000 hex	
		$[3] 0000$ hex	
		[4] 0000 hex	

Description: Sets the communication parameters for CANopen Transmit Process Data Object 2 (TPDO 2).
Index:
[0] = PDO COB-ID
[1] = PDO transmission type
[2] = Inhibit time (in $100 \mu \mathrm{~s}$)
[3] = Reserved
[4] = Event timer (in ms)

2.2 List of parameters

Dependency:	A valid COB-ID can only be set for the available (existing) channel.
Notice:	For inhibit time and event timer, the following apply:
Note:	A value that is not a multiple integer of the CANopen sampling time is rounded-off.
	Corresponds to the CANopen object 1801 hex.
	Transmission types $0,1 \ldots$ FO, FE and FF can be set.
	p2048: CANopen sampling time
	PDO: Process Data Object

p8722[0..4]	CAN Transmit PDO 3 / Transmit PDO 3		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208,9210
	Min	Max	Factory setting
	0000 hex	C000 06DF hex	$[0]$ C000 06DF hex
		$[1] 00$ hex	
		$[2] 0000$ hex	
		$[3] 000$ hex	
		$[4] 0000$ hex	

Description: Sets the communication parameters for CANopen Transmit Process Data Object 3 (TPDO 3).

Index:	$[0]=$ PDO COB-ID
	$[1]=$ PDO transmission type
	$[2]=$ Inhibit time (in $100 \mu \mathrm{~s})$
	$[3]=$ Reserved
	$[4]$ = Event timer (in ms)
Dependency:	A valid COB-ID can only be set for the available (existing) channel.
Notice:	For inhibit time and event timer, the following apply:
	A value that is not a multiple integer of the CANopen sampling time is rounded-off.
Note: \quad	Corresponds to the CANopen object 1802 hex.
	Transmission types 0, $1 \ldots$ F0, FE and FF can be set.
	p2048: CANopen sampling time
	PDO: Process Data Object

p8723[0...4]	CAN Transmit PDO 4 / Transmit PDO 4		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208, 9210
	Min	Max	Factory setting
	0000 hex	C000 06DF hex	[0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication parameters for CANopen Transmit Process Data Object 4 (TPDO 4).		
Index:	$\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission typ }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Notice:	For inhibit time and event timer, the following apply:		
	A value that is not a multiple integer of the CANopen sampling time is rounded-off.		
Note:	Corresponds to the CANopen object 1803 hex.		
	Transmission types $0,1 \ldots$ F0, FE and FF can be set.		
	p2048: CANopen sampling time		
	PDO: Process Data Object		

2.2 List of parameters

p8726[0...4]	CAN Transmit PDO 7 / Transmit PDO 7
G120C_CAN	Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: $\mathrm{C}(3), \mathrm{T}$ Scaling: - Dyn. index: - Unit group: - Unit selection: - Func. diagram: 9208 Min Max Factory setting 0000 hex C000 06DF hex $[0]$ C000 06DF hex $[1] 00 \mathrm{FE}$ hex $[2] 0000$ hex $[3] 0000$ hex $[4] 0000$ hex
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 7 (TPDO 7). $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$
Dependency: Notice: Note:	A valid COB-ID can only be set for the available (existing) channel. For inhibit time and event timer, the following apply: A value that is not a multiple integer of the CANopen sampling time is rounded-off. Corresponds to the CANopen object 1806 hex +40 hex * x (x: Drive number 0 ... 7). Transmission types $0,1 \ldots$ FO, FE and FF can be set. p8848: CANopen sampling time PDO: Process Data Object
p8727[0...4]	CAN Transmit PDO 8 / Transmit PDO 8
G120C_CAN	Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: $\mathrm{C}(3), \mathrm{T}$ Scaling: - Dyn. index: - Unit group: - Unit selection: - Func. diagram: 9208 Min Max Factory setting 0000 hex C000 06DF hex [0] C000 06DF hex $[1] 00 \mathrm{FE}$ hex $[2] 0000$ hex $[3] 0000$ hex $[4] 0000$ hex
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 8 (TPDO 8). [0] = PDO COB-ID [1] = PDO transmission type [2] = Inhibit time (in $100 \mu \mathrm{~s}$) [3] = Reserved [4] = Event timer (in ms)
Dependency: Notice:	A valid COB-ID can only be set for the available (existing) channel. For inhibit time and event timer, the following apply: A value that is not a multiple integer of the CANopen sampling time is rounded-off.
Note:	Corresponds to the CANopen object 1807 hex. Transmission types $0,1 \ldots$ F0, FE and FF can be set. p2048: CANopen sampling time PDO: Process Data Object

p8730[0...3]	CAN Transmit Mapping for TPDO 1 / Mapping TPDO 1		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208, 9210
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 1 (TPDO 1).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A00 hex.		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		
p8731[0...3]	CAN Transmit Mapping for TPDO 2 / Mapping TPDO 2		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208, 9210
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 2 (TPDO 2).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A01 hex.		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		
p8732[0...3]	CAN Transmit Mapping for TPDO 3 / Mapping TPDO 3		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208, 9210
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 3 (TPDO 3).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		
p8733[0..3]	CAN Transmit Mapping for TPDO 4 / Mapping TPDO 4		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208, 9210
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description: Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		

2.2 List of parameters

Note:	Corresponds to the CANopen object 1 A03 hex.
The parameter can only be written online when the associated COB ID in p872x is set as invalid.	

p8734[0...3]	CAN Transmit Mapping for TPDO 5 / Mapping TPDO 5		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 5 (TPDO 5).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A04 hex.		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		

p8735[0...3]	CAN Transmit Mapping for TPDO 6 / Mapping TPDO 6		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 6 (TPDO 6).		
Index:	[0] = Mapped object 1		
	[1] = Mapped object 2		
	[2] = Mapped object 3		
	[3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A05 hex.		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		

p8736[0..3]	CAN Transmit Mapping for TPDO 7 / Mapping TPDO 7		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 7 (TPDO 7).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANop	A06 hex.	
	The parameter can only be	ine when the ass	$872 x$ is set as invalid.

p8737[0...3]	CAN Transmit Mapping for TPDO 8/Mapping TPDO 8		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9208
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex

Description: Sets the mapping parameters for CANopen Transmit Process Data Object 8 (TPDO 8).
Index:
[0] = Mapped object 1
[1] = Mapped object 2

Note:	[2] = Mapped object 3 [3] = Mapped object 4		
	Corresponds to the CANopen object 1A07 hex.		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		
p8744	CAN PDO mapping configuration / PDO Mapping config		
G120C_CAN	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: C, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9204, 9206, 9208, 9210
	Min	Max	Factory setting
	1	2	2
Description:	Selector switch for the PDO mapping.		
Value:	1: Predefined Conn 2: Free PDO Mapp		

r8745[0...15]	CO: CAN free PZD receive objects 16 bit / Free PZD recv 16		
G120C_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: 4000 H	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-

Description:	Access to free PZD receive objects 16 bit using the SDO transfer.
An index can only be used, if the corresponding object has not been mapped in a PDO.	

Index:
[0] = PZD object 0
[1] = PZD object 1
[2] = PZD object 2
[3] = PZD object 3
[4] = PZD object 4
[5] = PZD object 5
[6] = PZD object 6
[7] = PZD object 7
[8] = PZD object 8
[9] = PZD object 9
[10] = PZD object 10
[11] = PZD object 11
[12] = PZD object 12
[13] = PZD object 13
[14] = PZD object 14
[15] = PZD object 15
Note: Index 0 corresponds to the CANopen object 5800 hex Index 1 corresponds to the CANopen object 5801 hex Index 2 corresponds to the CANopen object 5802 hex Index 3 corresponds to the CANopen object 5803 hex Index 4 corresponds to the CANopen object 5804 hex Index 5 corresponds to the CANopen object 5805 hex Index 6 corresponds to the CANopen object 5806 hex Index 7 corresponds to the CANopen object 5807 hex Index 8 corresponds to the CANopen object 5808 hex Index 9 corresponds to the CANopen object 5809 hex Index 10 corresponds to the CANopen object 580A hex Index 11 corresponds to the CANopen object 580B hex Index 12 corresponds to the CANopen object 580C hex Index 13 corresponds to the CANopen object 580D hex Index 14 corresponds to the CANopen object 580E hex Index 15 corresponds to the CANopen object 580F hex

p8746[0...15]	CI: CAN free PZD send objects 16 bit / Free PZD send 16
G120C_CAN	Access level: 3 Calculated: - Data type: U32 / Integer16 Can be changed: U, T Scaling: 4000 H Dyn. index: - Unit group: - Unit selection: - Func. diagram: - Min Max Factory setting - - 0
Description:	Sets the signal source for free PZD send objects 16 bit for SDO transfer. An index can only be used, if the corresponding object has not been mapped in a PDO.
Index:	$\begin{aligned} & {[0]=\text { PZD object } 0} \\ & {[1]=\text { PZD object } 1} \\ & {[2]=\text { PZD object } 2} \\ & {[3]=\text { PZD object } 3} \\ & {[4]=\text { PZD object } 4} \\ & {[5]=\text { PZD object } 5} \\ & {[6]=\text { PZD object } 6} \\ & {[7]=\text { PZD object } 7} \\ & {[8]=\text { PZD object } 8} \\ & {[9]=\text { PZD object } 9} \\ & {[10]=\text { PZD object } 10} \\ & {[11]=\text { PZD object } 11} \\ & {[12]=\text { PZD object } 12} \\ & {[13]=\text { PZD object } 13} \\ & {[14]=\text { PZD object } 14} \\ & {[15]=\text { PZD object } 15} \end{aligned}$
Note:	Index 0 corresponds to the CANopen object 5810 hex Index 1 corresponds to the CANopen object 5811 hex Index 2 corresponds to the CANopen object 5812 hex Index 3 corresponds to the CANopen object 5813 hex Index 4 corresponds to the CANopen object 5814 hex Index 5 corresponds to the CANopen object 5815 hex Index 6 corresponds to the CANopen object 5816 hex Index 7 corresponds to the CANopen object 5817 hex Index 8 corresponds to the CANopen object 5818 hex Index 9 corresponds to the CANopen object 5819 hex Index 10 corresponds to the CANopen object 581A hex Index 11 corresponds to the CANopen object 581B hex Index 12 corresponds to the CANopen object 581C hex Index 13 corresponds to the CANopen object 581D hex Index 14 corresponds to the CANopen object 581E hex Index 15 corresponds to the CANopen object 581F hex
r8747[0...7]	CO: CAN free PZD receive objects 32 bit / Free PZD recv 32
G120C_CAN	Access level: 3 Calculated: - Data type: Integer32 Can be changed: - Scaling: 4000 H Dyn. index: - Unit group: - Unit selection: - Func. diagram: - Min Max Factory setting - - -
Description:	Access to free PZD receive objects 32 bit using the SDO transfer. An index can only be used, if the corresponding object has not been mapped in a PDO.
Index:	[0] = PZD object 0 [1] = PZD object 1 [2] = PZD object 2 [3] = PZD object 3 [4] = PZD object 4 [5] = PZD object 5 [6] = PZD object 6 [7] = PZD object 7

Note:	Index 0 corresponds to the CANopen object 5820 hex		
	Index 1 corresponds to the CANopen object 5821 hex		
	Index 2 corresponds to the CANopen object 5822 hex		
	Index 3 corresponds to the CANopen object 5823 hex		
	Index 4 corresponds to the CANopen object 5824 hex		
	Index 5 corresponds to the CANopen object 5825 hex		
	Index 6 corresponds to the CANopen object 5826 hex		
	Index 7 corresponds to the CANopen object 5827 hex		
p8748[0...7]	CI: CAN free PZD send objects 32 bit / Free PZD send 32		
G120C_CAN	Access level: 3	Calculated: -	Data type: U32 / Integer32
	Can be changed: U, T	Scaling: 4000 H	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for free PZD send objects 32 bit for SDO transfer.		
	An index can only be used, if the corresponding object has not been mapped in a PDO.		
Index:	[0] = PZD object 0		
	[1] = PZD object 1		
	[2] = PZD object 2		
	[3] = PZD object 3		
	[4] = PZD object 4		
	[5] = PZD object 5		
	[6] = PZD object 6		
	[7] = PZD object 7		
Note:	Index 0 corresponds to the CANopen object 5830 hex		
	Index 1 corresponds to the CANopen object 5831 hex		
	Index 2 corresponds to the CANopen object 5832 hex		
	Index 3 corresponds to the CANopen object 5833 hex		
	Index 4 corresponds to the CANopen object 5834 hex		
	Index 5 corresponds to the CANopen object 5835 hex		
	Index 6 corresponds to the CANopen object 5836 hex		
	Index 7 corresponds to the CANopen object 5837 hex		
r8750[0...15]	CAN mapped 16-bit receive objects / RPDO 16 mapped		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the mapped 16-bit receive CANopen objects in the process data buffer.		
	Example:		
	If, e.g. the control word is mapped in an RPDO, then r8750 indicates the position of the control word in the process data buffer.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12...15] = Reserved		

2.2 List of parameters

r8751[0...15]	CAN mapped 16-bit transmit objects / TPDO 16 mapped		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays mapped 16-bit transmit CANopen objects in the process data buffer.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	$\begin{aligned} & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \end{aligned}$		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12...15] = Reserved		
Dependency:	Refer to: r8750		

r8760[0...14]	CAN mapped 32-bit receive objects / RPDO 32 mapped		
G120C_CAN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting

Description: Displays the mapped 32-bit receive CANopen objects in the process data buffer.
Index:
$[0]=$ PZD $1+2$
$[1]=$ PZD $2+3$
[2] $=$ PZD $3+4$
[3] $=$ PZD $4+5$
[4] = PZD $5+6$
[5] = PZD $6+7$
[6] $=$ PZD $7+8$
[7] $=$ PZD $8+9$
[8] = PZD $9+10$
[9] = PZD $10+11$
[10] = PZD $11+12$
[11...14] = Reserved
r8761[0...14] CAN mapped 32-bit transmit objects / TPDO 32 mapped
G120C_CAN

Description:
Displays mapped 32-bit transmit CANopen objects in the process data buffer.
Index:
[0] = PZD $1+2$
[1] = PZD $2+3$
[2] $=$ PZD $3+4$
[3] $=$ PZD $4+5$
[4] $=$ PZD $5+6$
[5] $=$ PZD $6+7$
[6] = PZD $7+8$
[7] $=$ PZD $8+9$
[8] = PZD $9+10$

$\begin{aligned} & \text { p8786 } \\ & \text { G120C_CAN } \end{aligned}$	BI: CAN status word bit 14 / Status word bit 14		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9226
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for bit 14 of the CANopen status word.		
Dependency:	Refer to: r8784		
p8787	BI: CAN status word bit 15 / Status word bit 15		
G120C_CAN	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 9226
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for bit 15 of the CANopen status word.		
Dependency:	Refer to: r8784		
p8790	CAN control word - auto interconnection / STW interc auto		
G120C_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the automatic BICO interconnection of the CANopen control word.		
Value:	0: No interconnection 1: Interconnection		
Dependency:	Refer to: r2050, r2090, r2091, r2092, r2093, r8750, r8795		
Note:	The following BICO interconnections are automatically established if the CANopen control word is mapped at one of the locations $x=0 \ldots 3$ in the receive process data buffer.		
	BI: p0840.0 $=$ r209x. 0		
	BI: p0844.0 = r209x. 1		
	BI: p0848.0 = r209x. 2		
	BI: p0852.0 = r209x. 3		
	BI: p2103.0 = r209x. 7		
	The write access is rejected if a CANopen control word is not mapped at one of these locations.		
	This also causes the project download of the commissioning software to be canceled.		
p8791	CAN stop option cod	CAN stop option code / Stop opt_code	
G120C_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-1	3	-1
Description: Value:	Setting for the CANopen control word bit 8 "Stop" (CANopen STW.8).		
	-1: No interconnection 1: Interconnection CANopen STW. 8 with p1142		
Dependency:	Refer to: r2050, r8750, r8795		
Note:	Corresponds to CANopen object 605D hex.		
	The BICO interconnection is established, if the CANopen control word is mapped at one of the locations $\mathrm{x}=0 \ldots 3$ in the receive process data buffer.		

r8792[0]	CO: CAN velocity mode I16 setpoint / Vel mod I16 set					
G120C_CAN	Access level: 3		Calculated: -		Data type: Integer16	
	Can be changed: -		Scaling: 4000H		Dyn. index: -	
	Unit group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-		-		-	
Description:	Display and connector output to interconnect standardized I16 setpoint CANopen objects of the velocity mode for SDO transfer.					
Index:	An index can only be used, if the corresponding object has not been mapped in a PDO.					
Note:	For index 0:					
	Corresponds to the CANopen object 6042 hex.					
	The displayed parameter value is scaled via the reference speed p2000:					
	4000 hex corresponds to p2000					
r8795.0... 15	CO/BO: CAN control word / Control word					
G120C_CAN	Access level: 3		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Unit group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-		-		-	
Description:	Access to the CANopen control word using SDO transfer.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		ON/OFF1		Yes	No	-
		Do not activat		Yes	No	-
		Do not activat		Yes	No	-
		Enable operat		Yes	No	-
		Enable ramp-f		Yes	No	-
		Continue ramp		Yes	No (freeze)	-
		Enable speed		Yes	No	-
		Acknowledge		Yes	No	-
		Stop		Yes	No	-
		Freely interco		Yes	No	-
		Freely interco		Yes	No	-
		Freely interco		Yes	No	-
		Freely interco		Yes	No	-
	15	Freely interco		Yes	No	-
Dependency:	Refer to: p8790					
Note:	Corresponds to the CANopen object 6040 hex.					
r8796[0]	CO: CAN profile velocity mode I32 setpoints / Pr vel mo I32 set					
G120C_CAN	Access level: 3		Calculated: -		Data type: Integer32	
	Can be changed: -		Scaling: 4000H		Dyn. index: -	
	Unit group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-				-	
Description:	Display and connector output to interconnect standardized I32 setpoint CANopen objects of the profile velocity mode for SDO transfer.					
	An index can only be used, if the corresponding object has not been mapped in a PDO.					
Index:	[0] = Target velocity					
Note:	For index 0 :					
	Corresponds to the CANopen object 60FF hex.					
	The displayed parameter value is scaled via the reference speed p2000:					
	40000000 hex corresponds to p2000					

r8797[0]	CO: CAN profile torque mode I16 setpoints /Pr Tq mod I16 set	
G120C_CAN	Calculated: -	Data type: Integer16

p8806[0...53] Identification and Maintenance 1 / I\&M 1

G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting

[^2]| Dependency: | Refer to: p8807, p8808 |
| :--- | :--- |
| Notice: | Only characters belonging to the standard ASCII character set may be used (32 dec to 126 dec). |
| Note: | An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual. |
| | For p8806[0...31]: |
| | System identifier. |
| | For p8806[32...53]: |
| | Location identifier. |

p8808[0...53]	Identification and Maintenance 3/I\&M 3		
G120C_PN	Access level: 3	Calculated: -	Sata type: Unsigned8
	Can be changed: U, T	Unit selection: -	Dyn. index: -
	Unit group: -	Max	Func. diagram: -
	Min	-	
	-	Factory setting	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 3" (I\&M 3).		
	This information is known as "Supplementary information".		
Dependency:	Refer to: p8806, p8807		
Notice:	Only characters belonging to the standard ASCII character set may be used (32 dec to 126 dec).		
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
	For p8808[0...53]:		

p8809[0...53]	Identification and Maintenance 4 / I\&M 4		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	11111111 bin	Factory setting
	0000 bin	0000 bin	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 4" (I\&M 4).		
	This information is known as "Signature".		

2 Parameters

2.2 List of parameters

$$
\begin{aligned}
& r 8859[3]=0 \\
& r 8859[4]=1300-->\text { first part, firmware version V13.00 (second part, see index 7) } \\
& r 8859[5]=2011 \text {--> year } 2011 \\
& r 8859[6]=2306 \text {--> 23rd of June } \\
& r 8859[7]=1700 \text {--> second part, firmware version (complete version: V13.00.17.00) }
\end{aligned}
$$

r8909	PN device ID / PN device ID	
G120C_PN	Access level: 3 Calculated: - Can be changed: - Scaling: - Unit group: - Unit selection: - Min Max - -	Data type: Unsigned16 Dyn. index: - Func. diagram: - Factory setting
Description:	Displays the PROFINET Device ID. Every SINAMICS device type has its own PROFINET Device ID and its own	PROFINET GSD.
Note:	List of the SINAMICS Device IDs: 0501 hex: S120/S150 0504 hex: G130/G150 050A hex: DC MASTER 050C hex: MV 050F hex: G120P 0510 hex: G120C 0511 hex: G120 CU240E-2 0512 hex: G120D 0513 hex: G120 CU250S-2 Vector 0514 hex: G110M	
p8920[0...239]	PN Name of Station / PN Name Stat	
G120C_PN	Access level: 3 Calculated: - Can be changed: U, T Scaling: - Unit group: - Unit selection: - Min Max	Data type: Unsigned8 Dyn. index: - Func. diagram: - Factory setting
Description:	Sets the station name for the onboard PROFINET interface on the Control The actual station name is displayed in r8930.	Unit.
Dependency: Note:	Refer to: p8925, r8930 An ASCII table (excerpt) can be found, for example, in the appendix to the The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting. PN: PROFINET	ist Manual.
p8921[0...3]	PN IP address / PN IP addr	
G120C_PN	Access level: 3 Calculated: - Can be changed: U, T Scaling: - Unit group: - Unit selection: - Min Max 0 255	Data type: Unsigned8 Dyn. index: - Func. diagram: - Factory setting 0
Description:	Sets the IP address for the onboard PROFINET interface on the Control Unit The actual IP address is displayed in r8931.	
Dependency: Note:	Refer to: p8925, r8931 The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting.	

p8922[0...3]	PN Default Gateway / PN Def Gateway		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Factory setting	
	0	0	0
Description:	Sets the default gateway for the onboard PROFINET interface on the Control Unit.		
	The actual standard gateway is displayed in r8932.		
Dependency:	Refer to: p8925, r8932		
Note:	The interface configuration (p8920 and following) is activated with p8925.		
	The parameter is not influenced by setting the factory setting.		

p8923[0...3]	PN Subnet Mask / PN Subnet Mask		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Factory setting	
	0	255	0
Description:	Sets the subnet mask for the onboard PROFINET interface on the Control Unit.		
	The actual subnet mask is displayed in r8933.		
Dependency:	Refer to: p8925, r8933		
Note:	The interface configuration (p8920 and following) is activated with p8925.		
	The parameter is not influenced by setting the factory setting.		

p8924	PN DHCP Mode / PN DHCP mode		
G120C_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	0
Description:	Sets the DHCP mode for the onboard PROFINET interface on the Control Unit.		
Value:	0: DHCP off 2: DHCP on, identification using MAC address 3: DHCP on, identification via name of station		
Dependency:	Refer to: p8925, r8934		
Notice:	When the DHCP mode is active (p8924 not equal to 0), then PROFINET communication via this interface is no longer possible! However, the interface can be used by the STARTER/SCOUT commissioning tool.		
Note:	The interface configuration (p8920 and following) is activated with p8925.		
	The active DHCP mode is displayed in parameter r8934.		
	The parameter is not influenced by setting the factory setting.		

p8925	Activate PN interface configuration / PN IF config		
G120C_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	0
Description:	Setting to activate the interface configuration for the onboard PROFINET interface on the Control Unit.		
	p8925 is automatically set to 0 at the end of the operation.		

Value:	$0:$ No function 1: Reserved 2: Activate and 3: Delete config		
Dependency:	Refer to: p8920, p8921, p8922, p8923, p8924		
Notice:	When the DHCP mode is active ($\mathrm{p} 8924>0$), then PROFINET communication via this interface is no longer possible! However, the interface can be used by the STARTER/SCOUT commissioning tool.		
Note:	For p8925 = 2:		
	The interface configuration (p8920 and following) is saved and activated after the next POWER ON		
	For p8925 = 3:		
	The factory setting of the interface configuration is loaded after the next POWER ON.		
p8929	PN remote controller number / PN rem ctrl num		
G120C_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: C	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	2	1
Description:	Sets the number of remote controllers expected for PROFINET onboard.		
	The "Shared Device" functionality is activated with a value $=2$.		
	The drive is being accessed by two PROFINET controllers simultaneously:		
	- automation controller (SIMOTION or SIMATIC A-CPU).		
	- safety controller (SIMATIC F-CPU).		
Value:	1: Automation or Safety 2: Automation and Safet		
Notice:	The F CPU may only use PROFIsafe telegrams.		
Note:	Changes only become effective after POWER ON.		
r8930[0...239]	PN Name of Station actual / PN Name Stat act		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual station name for the onboard PROFINET interface on the Control Unit.		
r8931[0...3]	PN IP address actual / PN IP addr act		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	
Description:	Displays the actual IP address for the onboard PROFINET interface on the Control Unit.		
r8932[0...3]	PN Default Gateway actual / PN Def Gateway act		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	-
Description:	Displays the actual default gateway for the onboard PROFINET interface on the Control Unit.		

2.2 List of parameters

r8933[0...3]	PN Subnet Mask actual / PN Subnet Mask act		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	-
Description:	Displays the actual subnet mask for the onboard PROFINET interface on the Control Unit.		
r8934	PN DHCP Mode actual / PN DHCP Mode act		
G120C_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	-
Description:	Displays the actual DHCP mode for the onboard PROFINET interface on the Control Unit.		
Value:	0: DHCP off 2: DHCP on, identification using MAC address 3: DHCP on, identification via name of station		
Notice:	When the DHCP mode is active (parameter value not equal to 0), PROFINET communication via this interface is no longer possible! However, the interface can be used for commissioning tool such as STARTER or SCOUT.		
$\begin{aligned} & \text { r8935[0...5] } \\ & \text { G120c_PN } \end{aligned}$	PN MAC address / PN MAC addr		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	00FF hex	-
Description:	Displays the MAC ad	board PROFINET in	trol Unit.
r8939	PN DAP ID / PN DAP ID		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned3
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFINET Device Access Point ID (DAP ID) for the onboard PROFINET interface. The combination of device ID (r8909) and DAP ID uniquely identifies a PROFINET access point.		
Note:	List of the SINAMICS DAP IDs:		
	20007 hex: CBE20 V4.5		
	20008 hex: CBE20 V4.6		
	20107 hex: CU310-2 PN V4.5		
	20108 hex: CU310-2 PN V4.6		
	20307 hex: CU320-2 PN V4.5		
	20308 hex: CU320-2 PN V4.6		
	20407 hex: CU230P-2 PN /CU240x-2 PN V4.5		
	20408 hex: CU230P-2 PN /CU240x-2 PN /CU250S-2 PN /G110M PN V4.6		
	20507 hex: CU250D-2 PN V4.5		
	20508 hex: CU250D-2 PN V4.6		

r8960[0...2]	PN subslot controller assignment / PN subslot assign		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	8	-
Description:	Displays the controller assignment of a PROFINET subslot on the actual drive object. [0] = Subslot 2 PROFIsafe [1] = Subslot 3 PZD telegram [2] = Subslot 4 PZD supplementary data		
Index:			
Dependency:	Refer to: r8961, r8962		
Note:			
	If the parameter contains the value 2 in index [1], then this means that subslot 3 is assigned to controller 2.		
r8961[0...3]	PN IP Address Remote Controller 1 / IP Addr Rem Ctrl1		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling:	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	-
Description:	Displays the IP address of the first PROFINET controller connected with the device via PN onboard.		
r8962[0...3]	PN IP Address Remote Controller 2 / IP Addr Rem Ctrl2		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	-
Description:	Displays the IP address of the second PROFINET controller connected with the device via PN onboard		
p8980	Ethernet/IP profile / Eth/IP profile		
G120C_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2473
	Min	Max	Factory setting
	0	1	0
Description:	Sets the profile for Ethernet/IP.		
Value:	$\begin{array}{ll}\text { 0: } & \text { SINAMICS } \\ \text { 1: } & \text { ODVA AC/DC }\end{array}$		
Note:	Changes only become effective after POWER ON. The parameter is not influenced by setting the factory setting. ODVA: Open DeviceNet Vendor Association		
p8981	Ethernet/IP ODVA STOP mode / Eth/IP ODVA STOP		
G120C_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2473
	Min	Max	Factory setting
	0	1	0
Description:	Sets the STOP mode for the Ethernet/IP ODVA profile (p8980 = 1).		
Value:	0 O OFF1 1: OFF2		
Dependency:	Refer to: p8980		

2.2 List of parameters

Note: \quad Changes only become effective after POWER ON. \quad The parameter is not influenced by setting the factory setting

p8982	Ethernet/IP ODVA speed scaling / Eth/IP ODVA n scal	
G120C_PN	Access level: 3 Calculated: -	Data type: Integer16
	Can be changed: T Scaling: -	Dyn. index: -
	Unit group: - Unit selection: -	Func. diagram: -
	Min Max	Factory setting
	123133	128
Description:	Sets the scaling for the speed for Ethernet/IP ODVA profile (p8980 = 1).	
Value:	123: 32	
	124: 16	
	125: 8	
	126: 4	
	127: 2	
	128: 1	
	129: 0.5	
	$\text { 130: } 0.25$	
	$\text { 131: } 0.125$	
	132: 0.0625	
	133: 0.03125	
Dependency:	Refer to: p8980	
Note:	Changes only become effective after POWER ON.	
	The parameter is not influenced by setting the factory setting.	

p8983	Ethernet/IP ODVA torque scaling / Eth/IP ODVA M scal		
G120C_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	123	133	128
Description:	Sets the scaling for the torque for Ethernet/IP ODVA profile (p8980 = 1).		
Value:	123: 32		
	$\text { 124: } 16$		
	125: 8		
	126: 4		
	127: 2		
	128: 1		
	129: 0.5		
	130: 0.25		
	131: 0.125		
	132: 0.0625		
	133: 0.03125		
Dependency:	Refer to: p8980		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p8991	USB memory access / USB mem acc		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	2	1
Description:	Selects the storage medium for access via the USB mass storage.		
Value:	1: Memory card 2: Flash r/w inte		

Note:	A change only becomes effective after a POWER ON. The parameter is not influenced by setting the factory setting.		
p8999	USB functionality / USB Fct		
	Access level: 4	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	3	3
Description:	Setting the USB functionality.		
Value:	1: USS commissioning via the virtual COM port 2: Only memory access 3: USB commissioning and memory access		
Note:	COMM: Commissioning.		
	A change only becomes effective after a POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p9400	Safely remove memory card/ Mem_card rem		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	100	0
Description:	Setting and display when memory card is "removed safely".		
	Procedure:		
	Setting p9400 $=2$ results in a value of 3		
	--> The memory card can be removed safely. After removal the value sets itself to 0 automatically. Setting p9400 $=2$ results in a value of 100		
	--> The memory card cannot be removed safely. Removal may destroy the file system on the memory card. It may be necessary to set p9400 $=2$ again.		
Value:	0 : \quad No memory card inserted		
	1: Memory card inserted		
	2: Request "safe removal" of the memory card		
	3: "Safe removal" possible		
	100: "Safe removal" not possible due to access		
Dependency:	Refer to: r9401		
Notice:	Removing the memory card without a request $(\mathrm{p} 9400=2)$ and confirmation ($\mathrm{p} 9400=3$) may destroy the file system on the memory card. The memory card will then no longer work properly and must be replaced.		
Note:	The status when the memory card is being "removed safely" is shown in r9401.		
	For value $=0,1,3,100$:		
	These values can only be displayed, not set.		

r9401.0...3	CO/BO: Safely remove memory card status / Mem_card rem stat		
	Access level: 2	Calculated: -	Data type: Unsigned16

2.2 List of parameters

Note:	For bit 01, 00:
	Bit 1/0 = 0/0: No memory card inserted (corresponds to p9400 = 0).
	Bit 1/0 = 0/1: "Safe removal" possible (corresponds to p9400 = 3).
	Bit 1/0 = 1/0: Status not possible.
	Bit $1 / 0=1 / 1$: Memory card inserted (corresponds to p9400 $=1,2,100$).
	For bit 02, 00:
	Bit $2 / 0=0 / 0$: No memory card inserted.
	Bit $2 / 0=0 / 1$: Memory card inserted, but not a SIEMENS memory card.
	Bit $2 / 0=1 / 0$: Status not possible.
	Bit $2 / 0=1 / 1$: SIEMENS memory card inserted.

r9406[0..19]	PS file parameter number parameter not transferred / PS par_no n transf		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that were not able to be transferred when reading the parameter back-up files (PS files) from the non-volatile memory (e.g. memory card).		
	$\mathrm{r} 9406[0]=0$		
	--> All of the parameter values were able to be transferred error-free.		
	r9406[0...x] > 0		
	--> indicates the parameter number in the following cases:		
	- parameter, whose value was not able to be completely accepted.		
	- indexed parameter, where at least 1 index was not able to be accepted. The first index that is not transferred is displayed in r9407.		
Dependency:	Refer to: r9407, r9408		
Note:	All indices from r9406 to r9408 designate the same parameter.		
	r9406[x] parameter number, parameter not accepted		
	r9407[x] parameter index, parameter not accepted		
	r9408[x] fault code, parameter not accepted		

r9407[0...19]	PS file parameter index parameter not transferred / PS parameter index		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting

Description: Displays the first index of the parameters that could not be transferred when the parameter backup files (PS files) were read from the non-volatile memory (e.g. memory card).
If, from an indexed parameter, at least one index was not able to be transferred, then the parameter number is displayed in r9406[n] and the first index that was not transferred is displayed in r9407[n].
r9406[0] = 0
--> All of the parameter values were able to be transferred error-free.
r9406[n] > 0
--> Displays r9407[n] the first index of the parameter number r9406[n] that was not transferred.
Dependency: Refer to: r9406, r9408
Note: All indices from r9406 to r9408 designate the same parameter.
r9406[x] parameter number, parameter not accepted
r9407[x] parameter index, parameter not accepted
r9408[x] fault code, parameter not accepted

r9408[0...19]	PS file fault code parameter not transferred / PS fault code		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Only for internal Siemens service purposes.		
Dependency:	Refer to: r9406, r9407		
Note:	All indices from r9406 to r9408 designate the same parameter.		
	$\mathrm{r} 9406[\mathrm{x}]$ parameter number, parameter not accepted		
	r9407[x] parameter index, parameter not accepted		
	r9408[x] fault code, parameter not accepted		
r9463	Actual macro / Actual macro		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	999999	-
Description:	Displays the set valid macro.		
Note:	A value of 0 is displayed if a parameter set by a macro is changed.		
p9484	BICO interconnections search signal source / BICO S_src srch		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	0
Description:	Sets the signal source (BO/CO parameter, BICO coded) to search in the signal sinks.		
	The signal source to be searched for is set in p9484 (BICO-coded) and the search result is specified using the number (r9485) and the first index (r9486).		
Dependency:	Refer to: r9485, r9486		
r9485	BICO interconnections signal source search count / BICO S_src srchQty		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		-	-
Description:	Displays the number of BICO interconnections to the signal sink being searched for.		
Dependency:	Refer to: p9484, r9486		
Note:	The signal source to be searched is set in p9484 (BICO-coded).		
	The search result is contained in r9482 and r9483 and is specified by the count (r9485) and the first index (r9486).		

p9610	SI PROFIsafe address (processor 1) / SI PROFIsafe P1		
G120C_DP	Access level: 3	Calculated: -	Data type: Unsigned16
G120C_PN	Can be changed: C(95)	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	FFFE hex	0000 hex
Description:	Sets the PROFIsafe address for processor 1.		
Dependency:	Refer to: p9810		
p9650	SI F-Dl changeover discrepancy time (processor 1) / SI F-DI chg t P1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(95)	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2810
	Min	Max	Factory setting
	0.00 [ms]	2000.00 [ms]	500.00 [ms]
Description:	An F-DI changeover is not effective simultaneously due to the different runtimes in the two monitoring channels. After an F-DI changeover, dynamic data is not subject to a data cross-check during this discrepancy time.		
Dependency:	Refer to: p9850		
Note:	For a data cross-check b The set time is rounded F-DI: Fail-safe Digital Inp	50 and p9850, a diff n integer multiple	ty monitoring clock cycle is tolerated. ock cycle.
p9651	SI STO debounce time (processor 1) / SI STO t_debou P1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(95)	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [ms]	100.00 [ms]	1.00 [ms]
Description:	Sets the debounce time for the fail-safe digital inputs used to control the "STO" function. The debounce time is rounded to whole milliseconds.		
Note:	The debounce time is rou safe digital inputs with no Example: Debounce time $=1 \mathrm{~ms}$: Debounce time $=3 \mathrm{~ms}$:	le milliseconds. It uence on the selec of 1 ms are filtered; of 3 ms are filtered;	um duration of a fault pulse at the failof the Safety Basic Functions. than 2 ms are processed. than 4 ms are processed.

p9659	Sl forced checking procedure timer / SI FCP Timer		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(95)	Scaling: -	Dyn. index: -
	Unit group: -	Max selection: -	Func. diagram: 2810
	Min	$9000.00[\mathrm{~h}]$	Factory setting
	$0.00[\mathrm{~h}]$	8.00 [h]	
Description:	Sets the time interval for carrying out the forced checking procedure and testing the Safety switch-off signal paths.		
	Within the parameterized time, STO must have been de-selected at least once. The monitoring time is reset each		
	time that STO is de-selected.		
Dependency:	Refer to: A01699		
Note:	STO: Safe Torque Off		

2.2 List of parameters

p9701	Acknowledge SI data change / Ackn SI data		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: C(95), U, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	00EC hex	0000 hex
Description:	Setting to transfer the reference checksums from the associated actual checksums after changes (SI parameters, hardware).		
	After transferring the reference checksums, parameters are automatically reset to zero.		
Value:	0: [00 hex] Data unchanged 172: [AC hex] Acknowledge data change complete 220: [DC hex] Acknowledge SI basic parameter change 236: [EC hex] Acknowledge hardware CRC		
Dependency:	Refer to: r9798, p9799, r9898, p9899		
Note:	For value = AC and DC hex:		
	These values can only be set if the safety commissioning mode is set and the Safety Integrated password was entered.		
p9761	SI password input / SI password inp		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C, T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2800
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Enters the Safety Integrated password.		
Dependency:	Refer to: F01659		
Note:	It is not possible to change Safety Integrated parameters until the Safety Integrated password has been entered.		
p9762	SI password new / SI password new		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(95)	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2800
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Enters a new Safety Integrated password.		
Dependency:	A change made to the Safety Integrated password must be acknowledged in the following parameter: Refer to: p9763		
p9763	SI password acknowledgment / SI ackn password		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(95)	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2800
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Acknowledges the new Safety Integrated password.		
Dependency:	Refer to: p9762		
Note:	The new password entered into p9762 must be re-entered in order to acknowledge. p9762 $=$ p9763 $=0$ is automatically set after the new Safety Integrated password has been successfully acknowledged.		

2.2 List of parameters

Note:

For bit 00:
When STO is selected, the cause is displayed in bits $16 \ldots 21$.
For bit 18:
When the bit is set, STO is selected via PROFIsafe.
For bit 19:
For the drive-integrated motion monitoring functions, due to OFF2, no actual value sensing possible.

r9773.0... 31	CO/BO: SI status (processor 1 + processor 2) / SI status P1+P2				
	Acc	ss level: 2	Calculated: -	Data type: U	
	Can	be changed: -	Scaling: -	Dyn. index:	
	Unit	group: -	Unit selection: -	Func. diagra	
	Min		Max	Factory sett	
	-		-	-	
Description:	Display and BICO output for the Safety Integrated status on the drive (processor $1+$ processor 2).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		STO selected	Yes	No	2804
	01	STO active in	Yes	No	2804
	31	Test stop req	Yes	No	2810

Note: \quad This status is formed from the AND operation of the relevant status of the two monitoring channels.

2.2 List of parameters

2.2 List of parameters

2.2 List of parameters

Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.
Note:	Rounding effects can occur in the last decimal place of the parameterized time.
	The debounce time is rounded to whole milliseconds. It specifies the maximum duration of a fault pulse at the fail-
safe digital inputs with no reaction/influence on the selection or deselection of the Safety Basic Functions.	
Example:	
	Debounce time $=1 \mathrm{~ms}:$ Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed.
Debounce time $=3 \mathrm{~ms}$: Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.	

r9872.0... 21	CO/BO: SI status (processor 2) / SI Status P2					
	Access level: 2		Calculated: -		Data type: U	
	Can be changed: -		Scaling: -		Dyn. index:	
	Unit group: -		Unit selection: -		Func. diagr	
	Min		Max		Factory sett	
	-		Max			
Description:	Displays the Safety Integrated status on processor 2.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	STO selected		Yes	No	2810
	01	STO active on		Yes	No	2810
	07	STO terminal Functions)	or 2 (Basic	High	Low	-
	09	STOP A cann	ed active	Yes	No	2802
	10	STOP A activ		Yes	No	2802
	15	STOP F active		Yes	No	2802
	16	STO cause: S		Yes	No	-
	17	STO cause se Functions)	al (Basic	Yes	No	-

2.2 List of parameters

r20001[0...9]	Run-time group sampling time / RTG sampling time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the current sampling time of the run-time group 0 to 9 .		
Index:	[0] = Run-time group 0		
	[1] = Run-time group 1		
	[2] = Run-time group 2		
	[3] = Run-time group 3		
	[4] = Run-time group 4		
	[5] = Run-time group 5		
	[6] = Run-time group 6		
	[7] = Run-time group 7		
	[8] = Run-time group 8		
	[9] = Run-time group 9		
p20030[0...3]	BI: AND 0 inputs / AND 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10,11,12,13$ of instance AND 0 of the AND function block.		
Index:	[0] = Input 10		
	[1] = Input I1		
	[2] = Input 12		
	[3] = Input 33		
r20031	BO: AND 0 output Q / AND 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10$ \& 11 \& 12 \& 13 of instance AND 0 of the AND function block.		
p20032	AND 0 run-time group / AND 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	1	9999	9999
Description: Value:	Setting parameter for the run-time group in which the instance AND 0 of the AND function block is to be called.		
	1: Run-time group 1		
	2: Run-time group		
	3: Run-time group		
	4: Run-time group		
	5: Run-time group		
	$\begin{array}{ll}\text { 6: } & \text { Run-time group 6 } \\ \text { 9999: } & \text { Do not calculate }\end{array}$		

p20033	AND O run sequence / AND O RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	0	32000	10
Description:	Setting parameter for the run sequence of instance AND 0 within the run-time group set in p20032.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20034[0...3]	BI: AND 1 inputs / AND 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source [0] = Input 10 [1] = Input 11 [2] $=$ Input 12 [3] = Input 13	ties $10, \mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$ of in	he AND function block.
r20035	BO: AND 1 output Q / AND 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min		Factory setting
	-	-	
Description:	Display parameter for binary quantity $\mathrm{Q}=10$ \& 11 \& 12 \& 13 of instance AND 1 of the AND function block		

p20036	AND 1 run-time group / AND 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance AND 1 of the AND function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20037	AND 1 run sequence / AND 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	0	32000	20
Description:	Setting parameter for the run sequence of instance AND 1 within the run-time group set in p20036.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

2.2 List of parameters

p20038[0...3]	BI: AND 2 inputs / AND 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10, I 1, I 2, I 3$ of instance AND 2 of the AND function block.		
Index:	$[0]=$ Input 10		
	$[1]=$ Input I1		
	$[2]=$ Input 12		
	$[3]=$ Input 13		

r20039	BO: AND 2 output Q / AND 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	-	Factory setting
	-	-	
Description:	Display parameter for binary quantity $Q=10 \& I 1 \& I 2 \& I 3$ of instance AND 2 of the AND function block.		

p20040	AND 2 run-time group / AND 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance AND 2 of the AND function block is to be called		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20041	AND 2 run sequence / AND 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2710
	Min	Max	Factory setting
	0	32000	30
Description:	Setting parameter for the run sequence of instance AND 2 within the run-time group set in p20040.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20042[0...3]	BI: AND 3 inputs / AND 3 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10, I 1, I 2, I 3$ of instance AND 3 of the AND function block.		
Index:	$[0]=$ Input 10		

	$\begin{aligned} & {[2]=\text { Input I2 }} \\ & {[3]=\text { Input I3 }} \end{aligned}$		
r20043	BO: AND 3 output Q / AND 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity $Q=10 \& I 1 \& I 2 \& I 3$ of instance AND 3 of the AND function block.		
p20044	AND 3 run-time group / AND 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance AND 3 of the AND function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20045	AND 3 run sequence / AND 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	0	32000	40
Description:	Setting parameter for the run sequence of instance AND 3 within the run-time group set in p20044.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20046[0...3]	BI: OR 0 inputs / OR 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
		-	0
Description: Index:	Sets the signal source of in $[0]=$ Input IO $[1]=$ Input I1 $[2]=$ Input I2 $[3]=$ Input I3	ties $10, \mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$ of in	e OR function block.
r20047	BO: OR 0 output Q / OR 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity $Q=10\|11\| I 2 \mid I 3$ of instance $O R 0$ of the OR function block.		

2.2 List of parameters

p20048	OR 0 run-time group / OR 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance OR 0 of the OR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	3: \quad Run-time group 4		
	5: Run-time group 5		
	$\begin{array}{ll}\text { 5: } & \text { Run-time group 5 } \\ \text { 6: } & \text { Run-time group } 6 \\ \text { 9999: } & \text { Do not calculate }\end{array}$		

p20049	OR O run sequence / OR O RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	0	32000	60
Description:	Setting parameter for the run sequence of instance OR 0 within the run-time group set in p20048.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20050[0...3]	BI: OR 1 inputs / OR 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal source of input quantities IO, I1, I2, I3 of instance OR 1 of the OR function block.
[0] = Input IO
[1] = Input I1
[2] = Input I2
[3] = Input I3

r20051	BO: OR 1 output Q / OR 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	-	Factory setting
	-	-	
Description:	Display parameter for binary quantity $Q=I 0\|I 1\| I 2 \mid I 3$ of instance OR 1 of the OR function block.		

p20052	OR 1 run-time g	RTG	
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance OR 1 of the OR function block is to be called.		
Value:	1: Run-time group		
	2: Run-time group		

p20057	OR 2 run sequence / OR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	0	32000	80
Description:	Setting parameter for the run sequence of instance OR 2 within the run-time group set in p20056.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20058[0...3]	BI: OR 3 inputs / OR 3 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source [0] = Input 10 [1] = Input 11 [2] $=$ Input 12 [3] = Input 13	ties $10, \mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$ of in	e OR function block.
r20059	BO: OR 3 output Q / OR 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	
Description:	Display parameter for binary quantity $\mathrm{Q}=10\|11\| 12 \mid 13$ of instance OR 3 of the OR function block.		

p20060	OR 3 run-time group / OR 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance OR 3 of the OR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20061	OR 3 run sequence / OR 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	0	32000	90
Description:	Setting parameter for the run sequence of instance OR 3 within the run-time group set in p20060.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p	BI: XOR 0 inputs / XOR 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10,11, I 2, I 3$ of instance XOR 0 of the XOR function block.		
Index:	[0] = Input 10		
	[1] = Input 11		
	[2] = Input I2		
	[3] = Input I3		
r20063	BO: XOR 0 output Q / XOR 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity Q of instance XOR 0 of the XOR function block.		
p20064	XOR 0 run-time group / XOR 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance XOR 0 of the XOR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group		
	6: Run-time group 6		
	9999: Do not calculate		
p20065	XOR 0 run sequence / XOR 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	0	32000	110
Description:	Setting parameter for the run sequence of instance XOR 0 within the run-time group set in p20064.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
p20066[0..3]	BI: XOR 1 inputs / XOR 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10,11,12, I 3$ of instance XOR 1 of the XOR function block.		
Index:	[0] = Input IO		

2.2 List of parameters

$[2]=$ Input 12
$[3]=$ Input 13

r20067	BO: XOR 1 output Q / XOR 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity Q of instance XOR 1 of the XOR function block.		
p20068	XOR 1 run-time group / XOR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance XOR 1 of the XOR function block is to be called		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20069	XOR 1 run sequence / XOR 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	0	32000	120
Description:	Setting parameter for the run sequence of instance XOR 1 within the run-time group set in p20068.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20070[0...3]	BI: XOR 2 inputs / XOR 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10,11,12, I 3$ of instance XOR 2 of the XOR function block.		
Index:	[0] = Input 10		
	[1] = Input IT		
	$\begin{aligned} & {[2]=\text { Input } 12} \\ & {[3]=\text { Input } 13} \end{aligned}$		
r20071	BO: XOR 2 output Q / XOR 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity Q of instance XOR 2 of the XOR function block.		

2.2 List of parameters

	3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20077	XOR 3 run sequence / XOR 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	0	32000	140
Description:	Setting parameter for the run sequence of instance XOR 3 within the run-time group set in p20076.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20078	BI: NOT 0 input I / NOT 0 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	
Description:	Sets the signal source of input quantity I of instance NOT 0 of the inverter.		
r20079	BO: NOT 0 inverted output / NOT 0 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	
Description:	Display parameter for the inverted output of instance NOT 0 of the inverter.		
p20080	NOT 0 run-time group / NOT 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 0 of the inverter is to be called.		
Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

p20081	NOT 0 run sequence / NOT 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	160
Description:	Setting parameter for the run sequence of instance NOT 0 within the run-time group set in p20080.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20082	BI: NOT 1 input I / NOT 1 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity l of instance NOT 1 of the inverter.		
r20083	BO: NOT 1 inverted output / NOT 1 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for	tput of instance NO	
p20084	NOT 1 run-time group / NOT 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 1 of the inverter is to be called.		
Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20085	NOT 1 run sequence / NOT 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	170
Description:	Setting parameter for the run sequence of instance NOT 1 within the run-time group set in p20084.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20086	BI: NOT 2 input I / NOT 2 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity I of instance NOT 2 of the inverter.		
r20087	BO: NOT 2 inverted output / NOT 2 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output of instance NOT 2 of the inverter.		
p20088	NOT 2 run-time group / NOT 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 2 of the inverter is to be called.		
Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20089	NOT 2 run sequence / NOT 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	180
Description:	Setting parameter for the run sequence of instance NOT 2 within the run-time group set in p20088.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20090	BI: NOT 3 input I/ NOT 3 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity I of instance NOT 3 of the inverter.		

2.2 List of parameters

p20096	ADD 0 run-time group / ADD 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance ADD 0 of the adder is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20097	ADD 0 run sequence / ADD 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	210
Description:	Setting parameter for the run sequence of instance ADD 0 within the run-time group set in p20096.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20098[0...3]	CI: ADD 1 inputs / ADD 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of instance ADD 1 of the adder.		
Index:	[0] = Input X0		
	[1] = Input X1		
	[2] = Input X2		
	[3] = Input X3		
r20099	CO: ADD 1 output Y / ADD 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the output quantity $\mathrm{Y}=\mathrm{X} 0+\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$ of instance ADD 1 of the adder.		
p20100	ADD 1 run-time group / ADD 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance ADD 1 of the adder is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

p20101	ADD 1 run sequence / ADD 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	220
Description:	Setting parameter for the run sequence of instance ADD 1 within the run-time group set in p20100.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20102[0...1]	CI: SUB 0 inputs / SUB 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoin
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of minuend X 1 and subtrahend X 2 of instance SUB 0 of the subtractor. [0] = Minuend X1 [1] = Subtrahend X2		
r20103	CO: SUB 0 difference Y / SUB 0 difference Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the difference $\mathrm{Y}=\mathrm{X} 1-\mathrm{X} 2$ of instance SUB 0 of the subtractor.		

p20104	SUB 0 run-time group / SUB 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance SUB 0 of the subtractor is to be called.		
Value:	6: Run-time group 6		
p20105	SUB 0 run sequence / SUB 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	240
Description:	Setting parameter for the run sequence of instance SUB 0 within the run-time group set in p20104.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20106[0...1]	CI: SUB 1 inputs / SUB 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of minuend X 1 and subtrahend X 2 of instance SUB 1 of the subtractor. $[0]=\text { Minuend X1 }$ [1] = Subtrahend X2		
r20107	CO: SUB 1 difference Y / SUB 1 difference Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the difference $\mathrm{Y}=\mathrm{X} 1$ - X2 of instance SUB 1 of the subtractor.		
p20108	SUB 1 run-time group / SUB 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance SUB 1 of the subtractor is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20109	SUB 1 run sequence / SUB 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	250
Description:	Setting parameter for the run sequence of instance SUB 1 within the run-time group set in p20108.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20110[0...3]	CI: MUL 0 inputs / MUL 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the factors $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of instance MUL 0 of the multiplier.		
Index:	$\begin{aligned} & {[0]=\text { Factor X0 }} \\ & {[1]=\text { Factor X1 }} \\ & {[2]=\text { Factor X2 }} \\ & {[3]=\text { Factor X3 }} \end{aligned}$		

r20111	CO: MUL 0 product Y / MUL 0 product Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the product $Y=X 0$ * $\mathrm{X} 1{ }^{\text {* }} \mathrm{X} 2$ * X 3 of instance MUL 0 of the multiplier.		
p20112	MUL 0 run-time group / MUL 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance MUL 0 of the multiplier is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20113	MUL 0 run sequence / MUL 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	0	32000	270
Description:	Setting parameter for the run sequence of instance MUL 0 within the run-time group set in p20112.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20114[0...3]	CI: MUL 1 inputs / MUL 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the factors $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of instance MUL 1 of the multiplier.		
Index:	[0] = Factor X0		
	[1] = Factor X1		
	[2] = Factor X2		
	[3] = Factor X3		
r20115	CO: MUL 1 product Y / MUL 1 product Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the product $Y=X 0$ * $\mathrm{X} 1{ }^{*} \mathrm{X} 2$ * X 3 of instance MUL 1 of the multiplier.		

2.2 List of parameters

p20116	MUL 1 run-time group / MUL 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance MUL 1 of the multiplier is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20117	MUL 1 run sequence / MUL 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	0	32000	280
Description:	Setting parameter for the run sequence of instance MUL 1 within the run-time group set in p20116.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20118[0...1]	CI: DIV 0 inputs / DIV 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of dividend X1 and divisor X2 of instance DIV 0 of the divider.		
Index:	$\begin{aligned} & {[0]=\text { Dividend X0 }} \\ & {[1]=\text { Divisor X1 }} \end{aligned}$		
r20119[0...2]	CO: DIV 0 quotient / DIV 0 quotient		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for quotients $\mathrm{Y}=\mathrm{X} 1 / \mathrm{X} 2$, integer number quotients YIN , and division remainder MOD $=(\mathrm{Y}-\mathrm{YIN})$ $\mathrm{x} \times 2$ of instance DIV 0 of the divider.		
Index:	$\begin{aligned} & {[0]=\text { Quotient } \mathrm{Y}} \\ & {[1]=\text { Integer number quotient YIN }} \\ & {[2]=\text { Div remainder MOD }} \end{aligned}$		

r20120

Description: Display parameter for the signal QF that the divisor X2 of instance DIV 0 of the divider is zero. X2 $=0.0 \Rightarrow$ QF $=1$

2.2 List of parameters

p20126	DIV 1 run-time group / DIV 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance DIV 1 of the divider is to be called.		
Value:	5: Run-time group 5		
	$\begin{array}{ll}\text { 6: } & \text { Run-time group } 6 \\ \text { 9999: } & \text { Do not calculate }\end{array}$		
p20127	DIV 1 run sequence / DIV 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	0	32000	310
Description:	Setting parameter for the run sequence of instance DIV 1 within the run-time group set in p20126.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20128	CI: AVA 0 input X / AVA 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the input quantity X of instance AVA 0 of the absolute value generator with sign evaluation.		
r20129	CO: AVA 0 output Y / AVA 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
			-
Description:	Display parameter for output quantity Y of instance AVA 0 of the absolute value generator with sign evaluation.		
r20130	BO: AVA 0 input negative SN / AVA 0 input neg SN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
		-	-
Description:	Display parameter for signal SN that the input quantity X of instance AVA 0 of the absolute value generator with sign evaluation is negative.$X<0.0 \Rightarrow>S N=1$		

p20131	AVA 0 run-time group / AVA 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance AVA 0 of the absolute value generator with sign evaluation is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20132	AVA 0 run sequence / AVA 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	0	32000	340
Description:	Setting parameter for the run sequence of instance AVA 0 within the run-time group set in p20131.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20133	CI: AVA 1 input X / AVA 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the input quantity X of instance AVA 1 of the absolute value generator with sign evaluation.		
r20134	CO: AVA 1 output Y / AVA 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Y of instance AVA 1 of the absolute value generator with sign evaluation.		
r20135	BO: AVA 1 input negative SN / AVA 1 input neg SN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for signal SN that the input quantity X of instance AVA 1 of the absolute value generator with sign evaluation is negative.$X<0.0=>S N=1$		

p20136	AVA 1 run-time group / AVA 1 RTG		
	Access level: 3	Calculated: -	
	Can be changed: T	Scaling: -	Data type: Integer16

p20141	MFP 0 run-time group / MFP 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 0 of the pulse generator is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calcula		
p20142	MFP 0 run sequence / MFP 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	370
Description:	Setting parameter for the run sequence of instance MFP 0 within the run-time group set in p20141.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20143	BI: MFP 1 input pulse I / MFP 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance MFP 1 of the pulse generator.		
p20144	MFP 1 pulse duration in ms / MFP 1 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance MFP 1 of the pulse generator.		
r20145	BO: MFP 1 output Q / MFP 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance MFP 1 of the pulse generator.		

2.2 List of parameters

p20146	MFP 1 run-time group / MFP 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 1 of the pulse generator is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calcul		
p20147	MFP 1 run sequence / MFP 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	380
Description:	Setting parameter for the run sequence of instance MFP 1 within the run-time group set in p20146.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20148	BI: PCL 0 input pulse I/ PCL 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PCL 0 of the pulse shortener.		
p20149	PCL 0 pulse duration in ms / PCL 0 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance PCL 0 of the pulse shortener.		
r20150	BO: PCL 0 output Q / PCL 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PCL 0 of the pulse shortener.		

p20151	PCL 0 run-time group / PCL 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PCL 0 of the pulse shortener is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20152	PCL 0 run sequence / PCL 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	400
Description:	Setting parameter for the run sequence of instance PCL 0 within the run-time group set in p20151.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20153	BI: PCL 1 input pulse I / PCL 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PCL 1 of the pulse shortener.		
p20154	PCL 1 pulse duration in ms / PCL 1 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance PCL 1 of the pulse shortener.		
r20155	BO: PCL 1 output Q / PCL 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PCL 1 of the pulse shortener.		

2.2 List of parameters

p20156	PCL 1 run-time group / PCL 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PCL 1 of the pulse shortener is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20157	PCL 1 run sequence / PCL 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	410
Description:	Setting parameter for the run sequence of instance PCL 1 within the run-time group set in p20156.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20158	BI: PDE 0 input pulse I / PDE 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source for the input pulse I of instance PDE 0 of the closing delay device.		
p20159	PDE 0 pulse delay time in ms / PDE 0 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 0 of the closing delay device.		
r20160	BO: PDE 0 output Q / PDE 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PDE 0 of the closing delay device.		

p20161	PDE 0 run-time group / PDE 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PDE 0 of the closing delay device is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20162	PDE 0 run sequence / PDE 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0	32000	430
Description:	Setting parameter for the run sequence of instance PDE 0 within the run-time group set in p20161.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20163	BI: PDE 1 input pulse I / PDE 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDE 1 of the closing delay device.		
p20164	PDE 1 pulse delay time in ms / PDE 1 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 1 of the closing delay device.		
r20165	BO: PDE 1 output Q / PDE 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PDE 1 of the closing delay device.		

2.2 List of parameters

p20166	PDE 1 run-time group / PDE 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PDE 1 of the closing delay device is to be called. 5: Run-time group 5		
Value:			
	6: Run-time group 6		
	9999: Do not calculate		
p20167	PDE 1 run sequence / PDE 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0	32000	440
Description:	Setting parameter for the run sequence of instance PDE 1 within the run-time group set in p20166.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20168	BI: PDF 0 input pulse I/ PDF 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDF 0 of the breaking delay device.		
p20169	PDF 0 pulse extension time in ms / PDF 0 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse extension time T in milliseconds of instance PDF 0 of the breaking delay device.		
r20170	BO: PDF 0 output Q / PDF 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PDF 0 of the breaking delay device.		

p20171	PDF 0 run-time group / PDF 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PDF 0 of the breaking delay device is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20172	PDF 0 run sequence / PDF 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0	32000	460
Description:	Setting parameter for the run sequence of instance PDF 0 within the run-time group set in p20171.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20173	BI: PDF 1 input pulse I / PDF 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDF 1 of the breaking delay device.		
p20174	PDF 1 pulse extension time in ms / PDF 1 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse extension time T in milliseconds of instance PDF 1 of the breaking delay device.		
r20175	BO: PDF 1 output Q / PDF 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PDF 1 of the breaking delay device.		

2.2 List of parameters

p20176	PDF 1 run-time group / PDF 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PDF 1 of the breaking delay device is to be called. 5: Run-time group 5		
Value:			
	6: Run-time group 6		
	9999: Do not calculate		
p20177	PDF 1 run sequence / PDF 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0	32000	470
Description:	Setting parameter for the run sequence of instance PDF 1 within the run-time group set in p20176.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20178[0...1]	BI: PST 0 inputs / PST 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for input pulse I and the reset input R of instance PST 0 of the pulse extension element.		
	[0] = Input pulse I [1] = Reset input R		
p20179	PST 0 pulse duration in ms / PST 0 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance PST 0 of the pulse extension element.		
r20180	BO: PST 0 output Q / PST 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PST 0 of the pulse extension element.		

2.2 List of parameters

p20191	RSR 0 run-time group / RSR 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance RSR 0 of the RS flipflop is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20192	RSR 0 run sequence / RSR 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	7999	520
Description:	Setting parameter for the run sequence of instance RSR 0 within the run-time group set in p20191.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20193[0...1]	BI: RSR 1 inputs / RSR 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for set input S and reset input R of instance RSR 1 of the RS flipflop.		
Index:	$[0]=\text { Set S }$		$[1]=\text { Reset } R$
r20194	BO: RSR 1 output Q / RSR 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
		-	
Description:	Display parameter for output Q of instance RSR 1 of the RS flipflop		
r20195	BO: RSR 1 inverted output QN / RSR 1 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-		
Description:	Display parameter for inverted output QN of instance RSR 1 of the RS flipflop.		

2.2 List of parameters

p20196	RSR 1 run-time group / RSR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance RSR 1 of the RS flipflop is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20197	RSR 1 run sequence / RSR 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	7999	530
Description:	Setting parameter for the run sequence of instance RSR 1 within the run-time group set in p20196.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20198[0...3]	BI: DFR 0 inputs / DFR 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	0

Description: \quad Sets the signal source for trigger input I, D input D, set input S, and reset input R of instance $D F R$ of the D flipflop.
[0] = Trigger input I
[1] = D input D
[2] = Set S
[3] = Reset R

r20199	BO: DFR 0 output Q / DFR 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output Q of instance DFR 0 of the D flipflop.		
r20200	BO: DFR 0 inverted output QN / DFR 0 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output QN of instance DFR 0 of the D flipflop.		

2.2 List of parameters

p20206	DFR 1 run-time group / DFR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance DFR 1 of the D flipflop is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20207	DFR 1 run sequence / DFR 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	32000	560
Description:	Setting parameter for the run-time group of instance DFR 1 within the run-time group set in p20206.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20208[0...1]	BI: BSW 0 inputs / BSW 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities 10 and 11 of instance BSW 0 of the binary changeover switch.$[0]=\text { Input } 10$		
	[1] = Input I1		
p20209	BI: BSW 0 switch setting I / BSW 0 sw_setting		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
Description:	Sets the signal source of the switch setting I of instance BSW 0 of the binary changeover switch.		
r20210	BO: BSW 0 output Q / BSW 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Q of instance BSW 0 of the binary changeover switch.		

p20211	BSW 0 run-time group / BSW 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance BSW 0 of the binary changeover switch is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: \quad Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20212	BSW 0 run sequence / BSW 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	0	7999	580
Description:	Setting parameter for the run sequence of instance BSW 0 within the run-time group set in p20211.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
p20213[0...1]	BI: BSW 1 inputs / BSW 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source of input quantities 10 and I1 of instance BSW 1 of the binary changeover switch.		
Index:	[0] = Input I0		
	[1] = Input I1		
p20214	BI: BSW 1 switch setting I / BSW 1 sw_setting		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the switch setting I of instance BSW 1 of the binary changeover switch.		
r20215	BO: BSW 1 output Q / BSW 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Q of instance BSW 1 of the binary changeover switch.		

2.2 List of parameters

p20216	BSW 1 run-time group / BSW 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance BSW 1 of the binary changeover switch is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20217	BSW 1 run sequence / BSW 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	0	7999	590
Description:	Setting parameter for the run sequence of instance BSW 1 within the run-time group set in p20216.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20218[0...1]	CI: NSW 0 inputs / NSW 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities X0 and X1 of instance NSW 0 of the numeric changeover switch.[0] = Input X0		
	$\begin{aligned} & {[0]=\text { Input X0 }} \\ & {[1]=\text { Input X1 }} \end{aligned}$		
p20219	BI: NSW 0 switch setting I / NSW 0 sw_setting		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source of the switch setting I of instance NSW 0 of the numeric changeover switch.		
r20220	CO: NSW 0 output Y / NSW 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-		
Description:	Display parameter for output quantity Y of instance NSW 0 of the numeric changeover switch.		

p20221	NSW 0 run-time group / NSW 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance NSW 0 of the numeric changeover switch is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20222	NSW 0 run sequence / NSW 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	0	32000	
Description:	Setting parameter for the run sequence of instance NSW 0 within the run-time group set in p20221.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20223[0...1]	CI: NSW 1 inputs / NSW 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantities X 0 and X 1 of instance NSW 1 of the numeric changeover switch.[0] = Input X0		
	$\begin{aligned} & {[0]=\text { Input X0 }} \\ & {[1]=\text { Input X1 }} \end{aligned}$		
p20224	BI: NSW 1 switch setting I / NSW 1 sw_setting		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min		Factory setting
			0
Description:	Sets the signal source of the switch setting I of instance NSW 1 of the numeric changeover switch.		
r20225	CO: NSW 1 output Y / NSW 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Y of instance NSW 1 of the numeric changeover switch.		

2.2 List of parameters

p20226	NSW 1 run-time group / NSW 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance NSW 1 of the numeric changeover switch is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20227	NSW 1 run sequence / NSW 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	0	32000	620
Description:	Setting parameter for the run sequence of instance NSW 1 within the run-time group set in p20226.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20228	CI: LIM 0 input X / LIM 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X of instance LIM 0 of the limiter.		
p20229	LIM 0 upper limit value LU / LIM 0 upper lim LU		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for the upper limit value LU of instance LIM 0 of the limiter.		
p20230	LIM 0 lower limit value LL / LIM 0 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for the lower limit value LL of instance LIM 0 of the limiter.		

r20231	CO: LIM 0 output Y / LIM 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the limited output quantity Y of instance LIM 0 of the limiter.		
r20232	BO: LIM 0 input quantity at the upper limit QU / LIM 0 QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LIM 0 of limiter QU (upper limit reached), i.e. QU $=1$ for $\mathrm{X}>=\mathrm{LU}$.		
r20233	BO: LIM 0 input quantity at the lower limit QL / LIM 0 QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LIM 0 of limiter QL (lower limit reached), i.e. QL = 1 for X <= LL.		
p20234	LIM 0 run-time group / LIM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance LIM 0 of the limiter is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20235	LIM 0 run sequence / LIM 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	0	32000	640
Description:	Setting parameter for the run sequence of instance LIM 0 within the run-time group set in p20234.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20236	CI: LIM 1 input X / LIM 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X of instance LIM 1 of the limiter.		

p20237	LIM 1 upper limit value LU / LIM 1 upper lim LU		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the upper limit value LU of instance LIM 1 of the limiter.		
p20238	LIM 1 lower limit value LL / LIM 1 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the lower limit value LL of instance LIM 1 of the limiter.		
r20239	CO: LIM 1 output Y / LIM 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the limited output quantity Y of instance LIM 1 of the limiter.		
r20240	BO: LIM 1 input quantity at the upper limit QU / LIM 1 QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LIM 1 of limiter QU (upper limit reached), i.e. $\mathrm{QU}=1$ for X >= LU.		
r20241	BO: LIM 1 input quantity at the lower limit QL / LIM 1 QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LIM 1 of limiter QL (lower limit reached), i.e. $\mathrm{QL}=1$ for $\mathrm{X}<=\mathrm{LL}$.		
p20242	LIM 1 run-time group / LIM 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance LIM 1 of the limiter is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

p20243	LIM 1 run sequence $/$ LIM 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	0	32000	650
Description:	Setting parameter for the run sequence of instance LIM 1 within the run-time group set in p20242.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20244[0...1]	CI: PT1 0 inputs / PT1 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantity X and of setting value SV of instance PT1 0 of the smoothing element.$\begin{aligned} & {[0]=\text { Input X }} \\ & {[1]=\text { Setting value SV }} \end{aligned}$		
p20245	BI: PT1 0 accept setting value S / PT1 0 acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the "accept setting value" signal of instant PT1 0 of the smoothing element.		
p20246	PT1 0 smoothing time constant in ms / PT1 0 T_smooth ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	0.00	340.28235E36	0.00
Description:	Sets the smoothing time constant T in milliseconds of instance PT1 0 of the smoothing element.		
r20247	CO: PT1 0 output Y / PT1 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the smoothed output quantity Y of instance PT1 0 of the smoothing element.		

2.2 List of parameters

p20248	PT1 0 run-time group / PT1 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PT1 0 of the smoothing element is to be called. 5: Run-time group 5		
Value:			
	6: Run-time group 6		
	9999: Do not calculate		
p20249	PT1 0 run sequence / PT1 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	0	32000	670
Description:	Setting parameter for the run sequence of instance PT1 0 within the run-time group set in p20248.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20250[0...1]	CI: PT1 1 inputs / PT1 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X and of setting value SV of instance PT1 1 of the smoothing element. $[0]=$ Input X		
	[1] = Setting value SV		
p20251	BI: PT1 1 accept setting value S / PT1 1 acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the "accept setting value" signal of instant PT1 1 of the smoothing element.		
p20252	PT1 1 smoothing time constant in ms / PT1 1 T_smooth ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	0.00	340.28235E36	0.00
Description:	Sets the smoothing time constant T in milliseconds of instance PT1 1 of the smoothing element.		

r20253	CO: PT1 1 output Y / PT1 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the smoothed output quantity Y of instance PT1 1 of the smoothing element.		
p20254	PT1 1 run-time group / PT1 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PT1 1 of the smoothing element is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20255	PT1 1 run sequence / PT1 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	0	32000	680
Description:	Setting parameter for the run sequence of instance PT1 1 within the run-time group set in p20254.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20256[0...1]	CI: INT 0 inputs / INT 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source of input quantity X and of setting value SV of instance INT 0 of the integrator.$[0]=\operatorname{Input} X$		
Index:			
	[1] = Setting value SV		
p20257	INT 0 upper limit value LU / INT 0 upper lim LU		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Sets the upper limit value LU of instance INT 0 of the integrator.		

2.2 List of parameters

p20258	INT 0 lower limit value LL / INT 0 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Sets the lower limit value LL of instance INT 0 of the integrator.		
p20259	INT 0 integrating time constant in ms / INT 0 T_Integr ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	0.00	340.28235E36	0.00
Description:	Sets the integrating time constant Ti in milliseconds of instance INT 0 of the integrator.		
p20260	BI: INT 0 accept setting value S / INT 0 acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the "accept setting value" signal of instant INT 0 of the integrator.		

r20261	CO: INT O output Y / INT O output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	-	Factory setting
Description:	-	Display parameter for output quantity Y of instance INT 0 of the integrator.	
	If LL> LU, then the output quantity $Y=$ LU.		

r20262	BO: INT $\mathbf{0}$ integrator at the upper limit QU / INT O QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	-	Factory setting
Description:	-	Display parameter for the signal QU that output quantity Y of instance INT 0 of the integrator has reached the upper	
	limit value LU.		

r20263	BO: INT 0 integrator at the lower limit QL / INT O QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	-	Factory setting
Description:	-	Display parameter for the signal QL that output quantity Y of instance INT 0 of the integrator has reached the lower	

p20264	INT 0 run-time group / INT 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance INT 0 of the integrator is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20265	INT 0 run sequence / INT 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	0	32000	700
Description:	Setting parameter for the run sequence of instance INT 0 within the run-time group set in p20264.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20266	CI: LVM 0 input X / LVM 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X of instance LVM 0 of the double-sided limiter.		
p20267	LVM 0 interval average value M / LVM 0 avg value M		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the interval average M of instance LVM 0 of the double-sided limiter.		
p20268	LVM 0 interval limit L / LVM 0 limit L		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the interval limit L of instance LVM 0 of the double-sided limiter.		
p20269	LVM 0 hyst HY / LVM 0 hyst HY		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for hysteresis HY of instance LVM 0 of the double-sided limiter.		

2.2 List of parameters

p20275	CI: LVM 1 input X / LVM 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X of instance LVM 1 of the double-sided limiter.		
p20276	LVM 1 interval average value M / LVM 1 avg value M		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the interval average M of instance LVM 1 of the double-sided limiter.		
p20277	LVM 1 interval limit L / LVM 1 limit L		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for	L of instance LVM 1	ded limiter.
p20278	LVM 1 hyst HY / LVM 1 hyst HY		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for	f instance LVM 1 of the	limiter.
r20279	BO: LVM 1 input quantity above interval QU / LVM 1 X above QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
		-	-
Description:	Display parameter of instance LVM 1 of the double-sided limiter that input quantity X was at least once $X>M+L$ and X is $>=M+L-H Y$.		
r20280	BO: LVM 1 input quantity within interval QM / LVM 1 X within QM		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-	-	
Description:	Display parameter of instance LVM 1 of the double-sided limiter that the input quantity X lies within the interval.		

2.2 List of parameters

r20281	BO: LVM 1 input quantity below interval QL / LVM 1 X below QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LVM 1 of the double-sided limiter that input quantity X was at least once $X<M-L$ and X is $<=M-L+H Y$.		
p20282	LVM 1 run-time group / LVM 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance LVM 1 of the double-sided limiter is to be called.		
Value:	5: Run-time group 5		
p20283	LVM 1 run sequence / LVM 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	0	7999	730
Description:	Setting parameter for the run sequence of instance LVM 1 within the run-time group set in p20282.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20284	CI: DIF 0 input X / DIF 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X of instance DIF 0 of the differentiating element.		
p20285	DIF 0 differentiating time constant in ms / DIF 0 T_diff ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	0.00	340.28235E36	0.00
Description:	Sets the differentiating time constant Td in milliseconds of instance DIF 0 of the differentiating element.		

r20286	CO: DIF 0 output Y / DIF 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Y of instance DIF 0 of the differentiating element.		
p20287	DIF 0 run-time group / DIF 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance DIF 0 of the differentiating element is to be called.		
Value:	$\begin{array}{ll}\text { 5: } & \text { Run-time group } 5 \\ \text { 6: } & \text { Run-time group 6 } \\ \text { 9999: } & \text { Do not calculate }\end{array}$		
p20288	DIF 0 run sequence / DIF 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	0	32000	750
Description:	Setting parameter for the run sequence of instance DIF 0 within the run-time group set in p20287.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20300	BI: NOT 4 input I / NOT 4 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal sourc	ty I of instance NOT 40	
r20301	BO: NOT 4 inverted output / NOT 4 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output of instance NOT 4 of the inverter.		

2.2 List of parameters

p20302	NOT 4 run-time group / NOT 4 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 4 of the inverter is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20303	NOT 4 run sequence / NOT 4 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	770
Description: Note:	Setting parameter for the run sequence of instance NOT 4 within the run-time group set in p20302.		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20304	BI: NOT 5 input I/ NOT 5 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity l of instance NOT 5 of the inverter.		
r20305	BO: NOT 5 inverted output / NOT 5 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output of instance NOT 5 of the inverter.		
p20306	NOT 5 run-time group / NOT 5 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description: Value:	Setting parameter for the run-time group in which the instance NOT 5 of the inverter is to be called.		
	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4		

	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20307	NOT 5 run sequence / NOT 5 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	780
Description:	Setting parameter for the run sequence of instance NOT 5 within the run-time group set in p20306.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20308[0...3]	CI: ADD 2 inputs / ADD 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of instance ADD 2 of the adder.		
Index:	[0] = Input X0		
	[1] = Input X1		
	[2] = Input X2		
	[3] = Input X3		
r20309	CO: ADD 2 output Y / ADD 2 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the output quantity $\mathrm{Y}=\mathrm{X} 0+\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$ of instance ADD 2 of the adder.		
p20310	ADD 2 run-time group / ADD 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance ADD 2 of the adder is to be called.		
Value:	$\begin{array}{ll} \text { 5: } & \text { Run-time group } 5 \\ \text { 6: } & \text { Run-time group } 6 \\ \text { 9999: } & \text { Do not calculate } \end{array}$		
p20311	ADD 2 run sequence / ADD 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	800
Description:	Setting parameter for the run sequence of instance ADD 2 within the run-time group set in p20310.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20312[0...1]	CI: NCM 0 inputs / NCM 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantities X 0 and X 1 of instance NCM 0 of the numeric comparator.$\begin{aligned} & {[0]=\text { Input X0 }} \\ & {[1]=\text { Input X1 }} \end{aligned}$		
r20313	BO: NCM 0 output QU / NCM 0 output QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
		-	-
Description:	Display parameter for binary quantity QU of instance NCM 0 of the numeric comparator. $Q U$ is only set if $\mathrm{X0}>\mathrm{X} 1$.		
r20314	BO: NCM 0 output QE / NCM 0 output QE		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QE of instance NCM 0 of the numeric comparator. QE is only set if $\mathrm{X0} 0 \mathrm{X} 1$.		
r20315	BO: NCM 0 output QL / NCM 0 output QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QL of instance NCM 0 of the numeric comparator. QL is only set if $\mathrm{X0} 0 \mathrm{X} 1$.		
p20316	NCM 0 run-time group / NCM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance NCM 0 of the numeric comparator is to be called		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

p20317	NCM O run sequence / NCM O RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	0	32000	820
Description:	Setting parameter for the run sequence of instance NCM 0 within the run-time group set in p20316.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20318[0...1]	CI: NCM 1 inputs / NCM 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantities X0 and X1 of instance NCM 1 of the numeric comparator.$\begin{aligned} {[0] } & =\operatorname{Input} X 0 \\ {[1] } & =\operatorname{Input} X 1 \end{aligned}$		
r20319	BO: NCM 1 output QU / NCM 1 output QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QU of instance NCM 1 of the numeric comparator. QU is only set if X0 > X1.		
r20320	BO: NCM 1 output QE / NCM 1 output QE		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QE of instance NCM 1 of the numeric comparator. $Q E$ is only set if $X 0=X 1$.		
r20321	BO: NCM 1 output QL / NCM 1 output QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QL of instance NCM 1 of the numeric comparator. QL is only set if $\mathrm{X0}$ < X 1 .		

2.2 List of parameters

p20322	NCM 1 run-time group / NCM 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance NCM 1 of the numeric comparator is to be called.		
Value:	5: Run-time group 5 (${ }^{\text {2 }}$		
	6: Run-time group 6		
	9999: Do not calculate		
p20323	NCM 1 run sequence / NCM 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	0	32000	830
Description:	Setting parameter for the run sequence of instance NCM 1 within the run-time group set in p20322.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20324[0...1]	BI: RSR 2 inputs / RSR 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source for set input S and reset input R of instance RSR 2 of the RS flipflop.		
Index:	$[0]=\operatorname{Set} S$		
r20325	BO: RSR 2 output Q / RSR 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output Q of instance RSR 2 of the RS flipflop		
r20326	BO: RSR 2 inverted output QN / RSR 2 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for inverted output QN of instance RSR 2 of the RS flipflop.		

2.2 List of parameters

p20332	DFR 2 run-time group / DFR 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance DFR 2 of the D flipflop is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20333	DFR 2 run sequence / DFR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	32000	870
Description: Note:	Setting parameter for the run-time group of instance DFR 2 within the run-time group set in p20332.		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20334	BI: PDE 2 input pulse I / PDE 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDE 2 of the closing delay device.		
p20335	PDE 2 pulse delay time in ms / PDE 2 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 2 of the closing delay device.		
r20336	BO: PDE 2 output Q / PDE 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for outp	of instance PDE 2	device.

p20337	PDE 2 run-time group / PDE 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PDE 2 of the closing delay device is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calcula		
p20338	PDE 2 run sequence / PDE 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0	32000	890
Description:	Setting parameter for the run sequence of instance PDE 2 within the run-time group set in p20337.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20339	BI: PDE 3 input pulse I / PDE 3 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDE 3 of the closing delay device.		
p20340	PDE 3 pulse delay time in ms / PDE 3 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for	T in milliseconds	of the closing delay device.
r20341	BO: PDE 3 output Q / PDE 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PDE 3 of the closing delay device.		

2.2 List of parameters

p20342	PDE 3 run-time group / PDE 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PDE 3 of the closing delay device is to be called.		
Value:	5: Run-time group 5		
	$\begin{array}{ll}\text { 6: } & \text { Run-time group } 6 \\ \text { 9999: } & \text { Do not calculate }\end{array}$		
p20343	PDE 3 run sequence / PDE 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0	32000	900
Description:	Setting parameter for the run sequence of instance PDE 3 within the run-time group set in p20342.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20344	BI: PDF 2 input pulse I/ PDF 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDF 2 of the breaking delay device.		
p20345	PDF 2 pulse extension time in ms / PDF 2 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse extension time T in milliseconds of instance PDF 2 of the breaking delay device.		
r20346	BO: PDF 2 output Q / PDF 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PDF 2 of the breaking delay device.		

p20347	PDF 2 run-time group / PDF 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PDF 2 of the breaking delay device is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20348	PDF 2 run sequence / PDF 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0	32000	920
Description:	Setting parameter for the run sequence of instance PDE 2 within the run-time group set in p20347.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20349	BI: PDF 3 input pulse I / PDF 3 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDF 3 of the breaking delay device.		
p20350	PDF 3 pulse extension time in ms / PDF 3 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse extension time T in milliseconds of instance PDF 3 of the breaking delay device.		
r20351	BO: PDF 3 output Q / PDF 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PDF 3 of the breaking delay device.		

2.2 List of parameters

p20352	PDF 3 run-time group / PDF 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PDF 3 of the breaking delay device is to be called.		
Value:			
	6: Run-time group 6		
	9999: Do not calculate		
p20353	PDF 3 run sequence / PDF 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0	32000	930
Description:	Setting parameter for the run sequence of instance PDE 3 within the run-time group set in p20352.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20354	BI: MFP 2 input pulse I / MFP 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance MFP 2 of the pulse generator.		
p20355	MFP 2 pulse duration in ms / MFP 2 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance MFP 2 of the pulse generator.		
r20356	BO: MFP 2 output Q / MFP 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance MFP 2 of the pulse generator.		

p20357	MFP 2 run-time group / MFP 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 2 of the pulse generator is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calcula		
p20358	MFP 2 run sequence / MFP 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	950
Description:	Setting parameter for the run sequence of instance MFP 2 within the run-time group set in p20357.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20359	BI: MFP 3 input pulse I / MFP 3 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance MFP 3 of the pulse generator.		
p20360	MFP 3 pulse duration in ms / MFP 3 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance MFP 3 of the pulse generator.		
r20361	BO: MFP 3 output Q / MFP 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance MFP 3 of the pulse generator.		

2.2 List of parameters

p20362	MFP 3 run-time group / MFP 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 3 of the pulse generator is to be called. 5: Run-time group 5		
Value:			
	6: Run-time group 6		
	9999: Do not calculate		
p20363	MFP 3 run sequence / MFP 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	960
Description:	Setting parameter for the run sequence of instance MFP 3 within the run-time group set in p20362.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20372	CI: PLI 0 input X / PLI 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for input X of the polyline (20 breakpoints) of instance PLI 0 .		
r20373	CO: PLI 0 output Y/ PLI 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter fo	ntity Y of the polyline (20	of instance PLI 0
p20374[0...19]	PLI 0 X-coordinate, A breakpoint / PLI 0 X-coordinate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description:			
Index:			
	$\begin{aligned} & {[0]=\text { Breakpoint } 0} \\ & {[1]=\text { Breakpoint } 1} \end{aligned}$		
	$[2]=$ Breakpoint 2		
	[3] = Breakpoint 3		
	[4] = Breakpoint 4		
	[5] = Breakpoint 5		
	[6] = Breakpoint 6		
	[7] = Breakpoint 7		
	$[8]=$ Breakpoint 8$[9]=$ Breakpoint 9		

2.2 List of parameters

p20378	CI: PLI 1 input X / PLI 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for input X of the polyline (20 breakpoints) of instance PLI 1.		
r20379	CO: PLI 1 output Y / PLI 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the output quantity Y of the polyline (20 breakpoints) of instance PLI 1		
p20380[0...19]	PLI 1 X-coordinate, A breakpoint / PLI 1 X-coordinate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description:	Sets the x -coordinates for the breakpoints (A0 ... A19) of the polyline (20 breakpoints) of instance PLI 1.		
Index:	[0] = Breakpoint 0 [1] = Breakpoint 1 [2] = Breakpoint 2 [3] = Breakpoint 3 [4] = Breakpoint 4 [5] = Breakpoint 5 [6] = Breakpoint 6 [7] = Breakpoint 7 [8] = Breakpoint 8 [9] = Breakpoint 9 [10] = Breakpoint 10 [11] = Breakpoint 11 [12] = Breakpoint 12 [13] = Breakpoint 13 [14] = Breakpoint 14 [15] = Breakpoint 15 [16] = Breakpoint 16 [17] = Breakpoint 17 [18] = Breakpoint 18 [19] = Breakpoint 19		
p20381[0...19]	PLI 1 Y-coordinate, B breakpoint / PLI 1 Y-coordinate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description: Index:	Sets the y-coordinates [0] = Breakpoint 0 [1] = Breakpoint 1 [2] = Breakpoint 2 [3] = Breakpoint 3 [4] = Breakpoint 4	oints (B0 ... B19) of the	eakpoints) of instance PLI 1.

r61000[0...239]	PROFINET Name of Station / PN Name of Station		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Unit group: -	Unit selection: -	Func. diagram: 2410
	Min	Max	Factory setting
	-	-	-
Description:	Displays PROFINET Name of Station.		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
r61001[0...3]	PROFINET IP of Station / PN IP of Station		
G120C_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index:-
	Unit group: -	Unit selection: -	Func. diagram: 2410
	Min	Max	Factory setting
	-	-	-
Description:	Displays PROFINET IP of Station.		

2.3 Parameters for data sets

2.3 Parameters for data sets

2.3.1 Command Data Sets (CDS)

Product: SINAMICS G120C, Version: 4710100 , Language: eng, Type: CDS
p0820[0...n] BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0840[0...n] BI: ON / OFF (OFF1) / ON / OFF (OFF1)
p0844[0...n] BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
p0845[0...n] BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2
p0848[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
p0849[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
p0852[0...n] BI: Enable operation/inhibit operation / Enable operation
p0854[0...n] BI: Control by PLC/no control by PLC / Master ctrl by PLC
p0855[0...n] BI: Unconditionally release holding brake / Uncond open brake
p0856[0...n] BI: Enable speed controller / n_ctrl enable
p0858[0...n] BI: Unconditionally close holding brake / Uncond close brake
p1000[0...n] Speed setpoint selection / n_set sel
p1020[0...n] BI: Fixed speed setpoint selection Bit 0 /n_set_fixed Bit 0
p1021[0...n] BI: Fixed speed setpoint selection Bit $1 / n _$set_fixed Bit 1
p1022[0...n] BI: Fixed speed setpoint selection Bit $2 / n _$set_fixed Bit 2
p1023[0...n] BI: Fixed speed setpoint selection Bit $3 / n _$set_fixed Bit 3
p1035[0...n] BI: Motorized potentiometer setpoint raise / Mop raise
p1036[0...n] BI: Motorized potentiometer lower setpoint / Mop lower
p1043[0...n] Bl: Motorized potentiometer accept setting value / MotP acc set val
p1044[0...n] CI: Motorized potentiometer setting value / Mop set val
p1055[0...n] BI: Jog bit $0 / \mathrm{Jog}$ bit 0
p1056[0...n] BI: Jog bit 1 / Jog bit 1
p1070[0...n] CI: Main setpoint / Main setpoint
p1071[0...n] CI: Main setpoint scaling / Main setp scal
p1075[0...n] Cl: Supplementary setp / Suppl setp
p1076[0...n] CI: Supplementary setpoint scaling / Suppl setp scal
p1106[0...n] Cl: Minimum speed signal source / n_min s_src
p1110[0...n] BI: Inhibit negative direction / Inhib neg dir
p1111[0...n] BI: Inhibit positive direction / Inhib pos dir
p1113[0...n] BI: Setpoint inversion / Setp inv
p1138[0...n] CI: Ramp-function generator ramp-up time scaling / RFG t_RU scal
p1139[0...n] CI: Ramp-function generator ramp-down time scaling / RFG t_RD scal
p1140[0...n] BI: Enable ramp-function generator/inhibit ramp-function generator / Enable RFG
p1141[0...n] BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG
p1142[0...n] BI: Enable setpoint/inhibit setpoint / Setpoint enable
p1201[0...n] Bl: Flying restart enable signal source / Fly_res enab S_src
p1230[0...n] BI: DC braking activation / DC brake act
p1330[0...n] CI: U/f control independent voltage setpoint / Uf U_set independ.
p1352[0...n] CI: Motor holding brake starting frequency signal source / Brake f_start
p1475[0...n] Cl: Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB
p1502[0...n] BI: Freeze moment of inertia estimator / J_estim freeze
p1511[0...n] CI: Supplementary torque 1 / M_suppl 1
p1512[0...n] CI: Supplementary torque 1 scaling / M_suppl 1 scal
p1522[0...n] CI: Torque limit upper / M_max upper
p1523[0...n] Cl: Torque limit lower / M_max lower
p1552[0...n] CI: Torque limit upper scaling without offset / M_max up w/o offs
p1554[0...n] CI: Torque limit lower scaling without offset / M_max low w/o offs
p2103[0...n] BI: 1st acknowledge faults / 1st acknowledge

p2104[0...n]	BI: 2nd acknowledge faults / 2nd acknowledge
p2106[0...n]	BI: External fault $1 /$ / External fault 1
p2112[0...n]	BI: External alarm $1 /$ / External alarm 1
p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable
p2220[0...n]	BI: Technology controller fixed value selection bit $0 /$ Tec_ctrl sel bit 0
p2221[0...n]	BI: Technology controller fixed value selection bit $1 /$ Tec_ctrl sel bit 1
p2222[0...n]	BI: Technology controller fixed value selection bit $2 /$ Tec_ctrl sel bit 2
p2223[0...n]	BI: Technology controller fixed value selection bit $3 /$ Tec_ctrl sel bit 3
p2235[0...n]	BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise
p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower
p2253[0...n]	CI: Technology controller setpoint $1 /$ Tec_ctrl setp 1
p2254[0...n]	CI: Technology controller setpoint $2 /$ Tec_ctrl setp 2
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val
p2286[0..n]	BI: Hold technology controller integrator / Tec_ctr integ hold
p2289[0...n]	CI: Technology controller precontrol signal / Tec_ctr prectr_sig
p2290[0...n]	BI: Technology controller limiting enable / Tec_ctrl lim enab
p2296[0...n]	CI: Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src
p2298[0...n]	CI: Technology controller minimum limit signal source / Tec_ctrl min_I s_s
p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs
p3330[0...n]	BI: 2/3 wire control command $1 / 2 / 3$ wire cmd 1
p3331[0...n]	BI: 2/3 wire control command $2 / 2 / 3$ wire cmd 2
p3332[0...n]	BI: 2/3 wire control command $3 / 2 / 3$ wire cmd 3
p3340[0...n]	BI: Limit switch start / Lim switch start
p3342[0...n]	BI: Limit switch plus / Lim switch plus
p3343[0...n]	BI: Limit switch minus / Lim switch minus

2.3.2 Drive Data Sets (DDS)

Product: SINAMICS G120C, Version: 4710100 , Language: eng, Type: DDS p0340[0...n] Automatic calculation motor/control parameters / Calc auto par p0640[0...n] Current limit / Current limit p1001[0...n] CO: Fixed speed setpoint $1 / n _$set_fixed 1
p1002[0...n] CO: Fixed speed setpoint $2 / n _$set_fixed 2
p1003[0...n] CO: Fixed speed setpoint 3 /n_set_fixed 3
p1004[0...n] CO: Fixed speed setpoint 4 / n_set_fixed 4
p1005[0...n] CO: Fixed speed setpoint $5 / n _$set_fixed 5
p1006[0...n] CO: Fixed speed setpoint $6 / n _$set_fixed 6
p1007[0...n] CO: Fixed speed setpoint $7 / n _$set_fixed 7
p1008[0...n] CO: Fixed speed setpoint $8 / n _$set_fixed 8
p1009[0...n] CO: Fixed speed setpoint $9 / n _$set_fixed 9
p1010[0...n] CO: Fixed speed setpoint $10 / n _$set_fixed 10
p1011[0...n] CO: Fixed speed setpoint 11 /n_set_fixed 11
p1012[0...n] CO: Fixed speed setpoint 12 / n_set_fixed 12
p1013[0...n] CO: Fixed speed setpoint 13 /n_set_fixed 13
p1014[0...n] CO: Fixed speed setpoint 14 /n_set_fixed 14
p1015[0...n] CO: Fixed speed setpoint 15 / n_set_fixed 15
p1030[0...n] Motorized potentiometer configuration / Mop configuration
p1037[0...n] Motorized potentiometer maximum speed / MotP n_max
p1038[0...n] Motorized potentiometer minimum speed / MotP n_min
p1040[0...n] Motorized potentiometer starting value / Mop start value
p1047[0...n] Motorized potentiometer ramp-up time / Mop ramp-up time
p1048[0...n] Motorized potentiometer ramp-down time / Mop ramp-down time
p1058[0...n] Jog 1 speed setpoint / Jog 1 n_set

2.3 Parameters for data sets

```
p1059[0...n] Jog 2 speed setpoint / Jog 2 n_set
p1080[0...n] Minimum speed / n_min
p1082[0...n] Maximum speed / n_max
p1083[0...n] CO: Speed limit in positive direction of rotation / n_limit pos
p1086[0...n] CO: Speed limit in negative direction of rotation / n_limit neg
p1091[0...n] Skip speed 1 / n_skip 1
p1092[0...n] Skip speed 2 / n_skip 2
p1101[0...n] Skip speed bandwidth / n_skip bandwidth
p1120[0...n] Ramp-function generator ramp-up time / RFG ramp-up time
p1121[0...n] Ramp-function generator ramp-down time / RFG ramp-down time
p1123[0...n] Ramp-function generator minimum ramp-up time / RFG t_RU min
p1127[0...n] Ramp-function generator minimum ramp-down time / RFG t_RD min
p1130[0...n] Ramp-function generator initial rounding-off time / RFG t_start_round
p1131[0...n] Ramp-function generator final rounding-off time / RFG t_end_delay
p1134[0...n] Ramp-function generator rounding-off type / RFG round-off type
p1135[0...n] OFF3 ramp-down time / OFF3 t_RD
p1136[0...n] OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd
p1137[0...n] OFF3 final rounding-off time / RFG OFF3 t_end_del
p1200[0...n] Flying restart operating mode / FlyRest op_mode
p1202[0...n] Flying restart search current / FlyRest I_srch
p1203[0...n] Flying restart search rate factor / FlyRst v_Srch Fact
p1226[0...n] Threshold for zero speed detection / n_standst n_thresh
p1240[0...n] Vdc controller configuration (vector control) / Vdc ctr config vec
p1243[0...n] Vdc_max controller dynamic factor / Vdc_max dyn_factor
p1245[0...n] Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level
p1247[0...n] Vdc_min controller dynamic factor (kinetic buffering) / Vdc_min dyn_factor
p1249[0...n] Vdc_max controller speed threshold / Vdc_max n_thresh
p1250[0...n] Vdc controller proportional gain / Vdc_ctrl Kp
p1251[0...n] Vdc controller integral time / Vdc_ctrl Tn
p1252[0...n] Vdc controller rate time / Vdc_ctrl t_rate
p1255[0...n] Vdc_min controller time threshold / Vdc_min t_thresh
p1256[0...n] Vdc_min controller response (kinetic buffering) / Vdc_min response
p1257[0...n] Vdc_min controller speed threshold / Vdc_min n_thresh
p1271[0...n] Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir
p1280[0...n] Vdc controller configuration (U/f) / Vdc_ctr config U/f
p1281[0...n] Vdc controller configuration / Vdc ctrl config
p1283[0...n] Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor
p1284[0...n] Vdc_max controller time threshold (U/f) / Vdc_max t_thresh
p1288[0...n] Vdc_max controller feedback coupling factor ramp-fct. gen. (U/f) / Vdc_max factor RFG
p1290[0...n] Vdc controller proportional gain (U/f) / Vdc_ctrl Kp
p1291[0...n] Vdc controller integral time (U/f) / Vdc_ctrl Tn
p1292[0...n] Vdc controller rate time (U/f)/Vdc_ctrl t_rate
p1293[0...n] Vdc min controller output limit (U/f) / Vdc_min outp_lim
p1295[0...n] Vdc_min controller time threshold (U/f) / Vdc_min t_thresh
p1297[0...n] Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh
p1300[0...n] Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode
p1302[0...n] U/f control configuration / U/f config
p1310[0...n] Starting current (voltage boost) permanent / I_start (Ua) perm
p1311[0...n] Starting current (voltage boost) when accelerating / I_start accel
p1312[0...n] Starting current (voltage boost) when starting / I_start start
p1320[0...n] U/f control programmable characteristic frequency 1 / Uf char f1
p1321[0...n] U/f control programmable characteristic voltage \(1 /\) Uf char U1
p1322[0...n] U/f control programmable characteristic frequency 2 / Uf char f2
p1323[0...n] U/f control programmable characteristic voltage 2 / Uf char U2
p1324[0...n] U/f control programmable characteristic frequency 3 / Uf char f3
```

p1325[0...n]	U/f control programmable characteristic voltage 3 / Uf char U3
p1326[0...n]	U/f control programmable characteristic frequency 4 / Uf char f4
p1327[0...n]	U/f control programmable characteristic voltage 4 / Uf char U4
p1331[0...n]	Voltage limiting / U_lim
p1333[0...n]	U/f control FCC starting frequency / U/f FCC f_start
p1334[0...n]	U/f control slip compensation starting frequency / Slip comp start
p1335[0...n]	Slip compensation scaling / Slip comp scal
p1336[0...n]	Slip compensation limit value / Slip comp lim val
p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain
p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp
p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn
p1345[0...n]	I_max voltage controller proportional gain / __max_U_ctrl Kp
p1346[0...n]	I_max voltage controller integral time / I_max_U_ctrl Tn
p1349[0...n]	U/f mode resonance damping maximum frequency / Uf res_damp f_max
p1351[0...n]	CO: Motor holding brake starting frequency / Brake f_start
p1382[0...n]	Saturation limit for flux setpoint / Max FluxSaturation
p1400[0...n]	Speed control configuration / n_ctrl config
p1401[0...n]	Flux control configuration / Flux ctrl config
p1452[0...n]	Speed controller speed actual value smoothing time (sensorless) / n_C n_act T_s SL
p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SL Kp
p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SL Tn
p1496[0...n]	Acceleration precontrol scaling / a_prectrl scal
p1498[0...n]	Load moment of inertia / Load M_inertia
p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth
p1520[0...n]	CO: Torque limit upper / M_max upper
p1521[0...n]	CO: Torque limit lower / M_max lower
p1524[0...n]	CO: Torque limit upper scaling / M_max upper scal
p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal
p1530[0...n]	Power limit motoring / P_max mot
p1531[0...n]	Power limit regenerative / $P_{\text {_ }}$ max gen
p1553[0...n]	Stall limit scaling / Stall limit scal
p1560[0...n]	Moment of inertia estimator accelerating torque threshold value / J_est M thresh
p1561[0...n]	Moment of inertia estimator change time moment of inertia / J_est t J
p1562[0...n]	Moment of inertia estimator change time load / J_est t load
p1563[0...n]	CO: Mom. of inertia estimator load torque direction of rotation pos. / J_est M pos
p1564[0...n]	CO: Mom. of inertia estimator load torque direction of rotation neg. / J_est M neg
p1570[0...n]	CO: Flux setpoint / Flex setp
p1575[0...n]	Voltage target value limit / U_tgt val lim
p1580[0...n]	Efficiency optimization / Efficiency opt.
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth
p1586[0...n]	Field weakening characteristic scaling / Field weak scal
p1590[0...n]	Flux controller P gain / Flux controller Kp
p1601[0...n]	Current injection ramp time / I_inject t_ramp
p1610[0...n]	Torque setpoint static (sensorless) / M_set static
p1611[0...n]	Additional acceleration torque (sensorless) / M_suppl_accel
p1616[0...n]	Current setpoint smoothing time / I_set T_smooth
p1715[0...n]	Current controller P gain / I_ctrl Kp
p1717[0...n]	Current controller integral-action time / I_ctrl Tn
p1720[0...n]	Current controller d axis p gain / Id_ctrl Kp
p1722[0...n]	Current controller d axis integral time / I_ctrl d-axis Tn
p1730[0...n]	Isd controller integral component shutdown threshold / Isd ctrl Tn shutd
p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp
p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall
p1749[0...n]	Motor model increase changeover speed encoderless operation / Incr n_chng no enc
p1750[0...n]	Motor model configuration / MotMod config

2.3 Parameters for data sets

p1755[0...n]
p1764[0...n]
p1767[0...n]
p1769[0...n]
p1780[0...n]
p1784[0...n]
r1787[0...n]
p1800[0...n]
p1802[0...n]
p1803[0...n]
p1806[0...n]
p1820[0...n]
p1959[0...
p2141[0...n]
p2153[0...n]
p2155[0...n]
p2156[0...n]
p2165[0...n]
p2168[0....
p2170[0...n]
p2171[0...n]
p2172[0...n]
p2174[0...n]
p2191[0....
p2194[0...
p2195[0...n]
p2201[0...n]
p2202[0...n]
p2203[0...n]
p2204[0...n]
p2205[0...n]
p2206[0...n]
p2207[0...n]
p2208[0...n]
p2209[0...n]
p2210[0...n]
p2211[0...n]
p2212[0...n]
p2213[0...n]
p2214[0...n]
p2215[0...n]
p2216[0...n]
p2230[0...n]
p2237[0...n]
p2238[0...n]
p2240[0...n]
p2247[0...n]
p2248[0...n]
p2900[0...n]
p2901[0...n]
p2930[0...n]
p3233[0...n]
p3315[0....
p3316[0...n]
p3320[0...n]

Motor model changeover speed encoderless operation / MotMod n_chgSnsorl
Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp
Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn
Motor model changeover delay time closed-loop control / MotMod t cl_ctrl
Motor model adaptation configuration / MotMod adapt conf
Motor model feedback scaling / MotMod fdbk scal
Motor model Lh adaptation corrective value / MotMod Lh corr
Pulse frequency setpoint / Pulse freq setp
Modulator mode / Modulator mode
Maximum modulation depth / Modulat depth max
Filter time constant Vdc correction / T_filt Vdc_corr
Reverse the output phase sequence / Outp_ph_seq rev
Rotating measurement configuration / Rot meas config
Speed threshold 1 / n _thresh val 1
Speed actual value filter time constant / n _act_filt T
Speed threshold 2 / n_thresh val 2
On delay comparison value reached / t_on cmpr val rchd
Load monitoring stall monitoring upper threshold / Stall_mon up thr
Load monitoring stall monitoring torque threshold / Stall_mon M_thresh
Current threshold value / I_thres
Current threshold value reached delay time / I_thresh rch t_del
DC link voltage threshold value / Vdc thresh val
Torque threshold value 1 / M _thresh val 1
Load monitoring torque threshold no load / M_thresh no load
Torque threshold value 2 / M_thresh val 2
Torque utilization switch-off delay / M_util t_off
CO: Technology controller fixed value 1 / Tec_ctrl fix val1
CO: Technology controller fixed value 2 / Tec_ctr fix val 2
CO: Technology controller fixed value 3 / Tec_ctr fix val 3
CO: Technology controller fixed value 4 / Tec_ctr fix val 4
CO: Technology controller fixed value 5 / Tec_ctr fix val 5
CO: Technology controller fixed value 6 / Tec_ctr fix val 6
CO: Technology controller fixed value 7 / Tec_ctr fix val 7
CO: Technology controller fixed value 8 / Tec_ctr fix val 8
CO: Technology controller fixed value 9 / Tec_ctr fix val 9
CO: Technology controller fixed value 10 / Tec_ctr fix val 10
CO: Technology controller fixed value 11 / Tec_ctr fix val 11
CO: Technology controller fixed value 12 / Tec_ctr fix val 12
CO: Technology controller fixed value 13 / Tec_ctr fix val 13
CO: Technology controller fixed value 14 / Tec_ctr fix val 14
CO: Technology controller fixed value 15 / Tec_ctr fix val 15
Technology controller fixed value selection method / Tec_ctr FixVal sel
Technology controller motorized potentiometer configuration / Tec_ctr mop config Technology controller motorized potentiometer maximum value / Tec_ctrl mop max Technology controller motorized potentiometer minimum value / Tec_ctrl mop min Technology controller motorized potentiometer starting value / Tec_ctrl mop start
Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown
CO: Fixed value 1 [\%] / Fixed value 1 [\%]
CO: Fixed value 2 [\%] / Fixed value 2 [\%]
CO: Fixed value M $[\mathrm{Nm}]$ / Fixed value $\mathrm{M}[\mathrm{Nm}]$
Torque actual value filter time constant / M_act_filt T
Efficiency optimization 2 minimum flux limit value / Min flux lim val Efficiency optimization 2 maximum flux limit value / Max flux lim val Fluid flow machine power point 1 / Fluid_mach P1

p3321[0...n]	Fluid flow machine speed point 1 / Fluid_mach n1
p3322[0...n]	Fluid flow machine power point 2 / Fluid_mach P2
p3323[0...n]	Fluid flow machine speed point 2 / Fluid_mach n2
p3324[0...n]	Fluid flow machine power point 3 / Fluid_mach P3
p3325[0...n]	Fluid flow machine speed point 3 / Fluid_mach n3
p3326[0...n]	Fluid flow machine power point 4 / Fluid_mach P4
p3327[0...n]	Fluid flow machine speed point 4 / Fluid_mach n4
p3328[0...n]	Fluid flow machine power point 5 / Fluid_mach P5
p3329[0...n]	Fluid flow machine speed point 5 / Fluid_mach n5
p3820[0...n]	Friction characteristic value $\mathrm{n0} 0 /$ Friction n0
p3821[0...n]	Friction characteristic value $\mathrm{n} 1 /$ Friction n 1
p3822[0...n]	Friction characteristic value $\mathrm{n} 2 /$ Friction n 2
p3823[0...n]	Friction characteristic value n3 / Friction n3
p3824[0...n]	Friction characteristic value n4/Friction n4
p3825[0...n]	Friction characteristic value n5 / Friction n5
p3826[0...n]	Friction characteristic value n6 / Friction n6
p3827[0...n]	Friction characteristic value n7 / Friction n7
p3828[0...n]	Friction characteristic value n8/Friction n8
p3829[0...n]	Friction characteristic value n9 / Friction n9
p3830[0...n]	Friction characteristic value M0 / Friction M0
p3831[0...n]	Friction characteristic value M1 / Friction M1
p3832[0...n]	Friction characteristic value M2 / Friction M2
p3833[0...n]	Friction characteristic value M3 / Friction M3
p3834[0...n]	Friction characteristic value M4 / Friction M4
p3835[0...n]	Friction characteristic value M5 / Friction M5
p3836[0...n]	Friction characteristic value M6 / Friction M6
p3837[0...n]	Friction characteristic value M7 / Friction M7
p3838[0...n]	Friction characteristic value M8 / Friction M8
p3839[0...n]	Friction characteristic value M9 / Friction M9
p3846[0...n]	Friction characteristic record ramp-up/ramp-down time / Frict rec t_RU/RD
p3847[0...n]	Friction characteristic record warm-up time / Frict rec t_warm
p3856[0...n]	Compound braking current / Compound I_brake
r3925[0...n]	Identification final display / Ident final_disp
r3927[0...n]	Motor data identification control word / MotID STW
r3928[0...n]	Rotating measurement configuration / Rot meas config
r3929[0...n]	Motor data identification modulated voltage generation / MotID U_gen mod
p5271[0...n]	Online tuning configuration controller / Ot config ctrl
p5310[0...n]	Moment of inertia precontrol configuration / J_est config
r5311[0...n]	Moment of inertia precontrol status word / J_prectrl ZSW
p5312[0...n]	Moment of inertia precontrol linear positive / J_est lin pos
p5313[0...n]	Moment of inertia precontrol constant positive / J_est const pos
p5314[0...n]	Moment of inertia precontrol linear negative / J_est lin neg
p5315[0...n]	Moment of inertia precontrol constant negative / J_est const neg
p5316[0...n]	Moment of inertia precontrol change time moment of inertia / J_prectrl t J

2.3 Parameters for data sets

2.3.3 Motor data sets (MDS)

Product: SINAMICS G120C, Version: 4710100, Language: eng, Type: MDS
p0133[0...n] Motor configuration / Motor config
p0300[0...n] Motor type selection / Mot type sel
p0301[0...n] Motor code number selection / Mot code No. sel
p0304[0...n] Rated motor voltage / Mot U_rated
p0305[0...n] Rated motor current / Mot I_rated
p0306[0...n] Number of motors connected in parallel / Motor qty
p0307[0...n] Rated motor power / Mot P_rated
p0308[0...n] Rated motor power factor / Mot cos phi rated
p0309[0...n] Rated motor efficiency / Mot eta_rated
p0310[0...n] Rated motor frequency / Mot f_rated
p0311[0...n] Rated motor speed / Mot n_rated
p0312[0...n] Rated motor torque / Mot M_rated
r0313[0...n] Motor pole pair number, actual (or calculated) / Mot PolePairNo act
p0314[0...n] Motor pole pair number / Mot pole pair No.
p0316[0...n] Motor torque constant / Mot kT
p0318[0...n] Motor stall current / Mot I_standstill
p0320[0...n] Motor rated magnetizing current/short-circuit current / Mot I_mag_rated
p0322[0...n] Maximum motor speed / Mot n_max
p0323[0...n] Maximum motor current / Mot I_max
p0325[0...n] Motor pole position identification current 1st phase / Mot PoIID I 1st Ph
p0329[0...n] Motor pole position identification current / Mot PoIID current
r0330[0...n] Rated motor slip / Mot slip_rated
r0331[0...n] Actual motor magnetizing current/short-circuit current / Mot l_mag_rtd act
r0333[0...n] Rated motor torque / Mot M_rated
p0335[0...n] Motor cooling type / Mot cool type
p0341[0...n] Motor moment of inertia / Mot M_mom of inert
p0342[0...n] Ratio between the total and motor moment of inertia / Mot MomInert Ratio
p0344[0...n] Motor weight (for the thermal motor model) / Mot weight th mod
r0345[0...n] Nominal motor starting time / Mot t_start_rated
p0346[0...n] Motor excitation build-up time / Mot t_excitation
p0347[0...n] Motor de-excitation time / Mot t_de-excitat
p0350[0...n] Motor stator resistance cold / Mot R_stator cold
p0352[0...n] Cable resistance / R_cable
p0354[0...n] Motor rotor resistance cold / Mot R_r cold
p0356[0...n] Motor stator leakage inductance / Mot L_stator leak.
p0357[0...n] Motor stator inductance d axis / Mot L_stator d
p0358[0...n] Motor rotor leakage inductance / Mot L_rot leak
p0360[0...n] Motor magnetizing inductance / Mot Lh
p0362[0...n] Motor saturation characteristic flux 1 / Mot saturat.flux 1
p0363[0...n] Motor saturation characteristic flux 2 / Mot saturat.flux 2
p0364[0...n] Motor saturation characteristic flux 3 / Mot saturat.flux 3
p0365[0...n] Motor saturation characteristic flux 4 / Mot saturat.flux 4
p0366[0...n] Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1
p0367[0...n] Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2
p0368[0...n] Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3
p0369[0...n] Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4
r0382[0...n] Motor magnetizing inductance transformed / Mot L_magn transf
r0384[0...n] Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd
r0386[0...n] Motor stator leakage time constant / Mot T_stator leak
r0394[0...n] Rated motor power / Mot P_rated
r0395[0...n] Actual stator resistance / R_stator act
r0396[0...n] Actual rotor resistance / R_rotor act
p0530[0...n] Bearing version selection / Bearing vers sel

p0531[0...n]	Bearing code number selection / Bearing codeNo sel
p0532[0...n]	Bearing maximum speed/Bearing n_max
p0541[0...n]	Load gearbox code number / Load grbx CodeNo
p0542[0...n]	Load gearbox maximum speed / Load grbx n_max
p0543[0...n]	Load gearbox maximum torque / Load grbx M_max
p0544[0...n]	Load gearbox overall ratio (absolute value) numerator / Load grbx ratio N
p0545[0...n]	Load gearbox overall ratio (absolute value) denominator / Load grbx ratio D
p0546[0...n]	Load gearbox output direction of rotation inversion / Load grbx outp inv
p0550[0...n]	Brake type / Brake type
p0551[0...n]	Brake code number / Brake code no.
p0552[0...n]	Maximum brake speed / Brake n_max
p0553[0...n]	Brake holding torque / Brake M_hold
p0554[0...n]	Brake moment of inertia / Brake J
p0601[0...n]	Motor temperature sensor type / Mot_temp_sens type
p0604[0...n]	Mot_temp_mod 2/sensor alarm threshold / Mod 2/sens A_thr
p0605[0...n]	Mot_temp_mod 1/2/sensor threshold and temperature value / Mod1/2/sens T_thr
p0606[0...n]	Mot_temp_mod 2/sensor timer / Mod 2/sens timer
p0607[0...n]	Temperature sensor fault timer / Sensor fault time
p0610[0...n]	Motor overtemperature response / Mot temp response
p0611[0...n]	I2t motor model thermal time constant / I2t mot_mod T
p0612[0...n]	Mot_temp_mod activation / Mot_temp_mod act
p0613[0...n]	Mot_temp_mod 1/3 ambient temperature / Mod 1/3 amb_temp
p0614[0...n]	Thermal resistance adaptation reduction factor / Therm R_adapt red
p0615[0...n]	Mot_temp_mod 1 (I2t) fault threshold / I2t F thresh
p0620[0...n]	Thermal adaptation, stator and rotor resistance / Mot therm_adapt R
p0621[0...n]	Identification stator resistance after restart / Rst_ident Restart
p0622[0...n]	Motor excitation time for Rs_ident after switching on again / t_excit Rs_id
p0625[0...n]	Motor ambient temperature during commissioning / Mot T_ambient
p0626[0...n]	Motor overtemperature, stator core / Mot T_over core
p0627[0...n]	Motor overtemperature, stator winding / Mot T_over stator
p0628[0...n]	Motor overtemperature rotor / Mot T_over rotor
r0630[0...n]	Mot_temp_mod ambient temperature / Mod T_ambient
r0631[0...n]	Mot_temp_mod stator iron temperature / Mod T_stator
r0632[0...n]	Mot_temp_mod stator winding temperature / Mod T_winding
r0633[0...n]	Mot_temp_mod rotor temperature / Mod rotor temp
p0637[0...n]	Q flux flux gradient saturated / PSIQ Grad SAT
p0650[0...n]	Actual motor operating hours / Oper hours motor
p0651[0...n]	Motor operating hours maintenance interval / Mot t_op maint
p0826[0...n]	Motor changeover motor number / Mot_chng mot No.
p1231[0...n]	DC braking configuration / DCBRK config
p1232[0...n]	DC braking braking current / DCBRK I_brake
p1233[0...n]	DC braking time / DCBRK time
p1234[0..n]	Speed at the start of DC braking / DCBRK n_start
p1909[0...n]	Motor data identification control word / MotID STW
p1980[0...n]	Polld technique / Polld technique
r3926[0...n]	Voltage generation alternating base voltage amplitude / U_gen altern base
p5350[0...n]	Mot_temp_mod 1/3 boost factor at standstill / Standst boost_fact
p5390[0...n]	Mot_temp_mod 1/3 alarm threshold / A thresh
p5391[0...n]	Mot_temp_mod 1/3 fault threshold / F thresh
r5398[0...n]	Mot_temp_mod 3 alarm threshold image p5390 / A thr image p5390
r5399[0...n]	Mot_temp_mod 3 fault threshold image p5391 / F thr image p5391

2.3.4 Power unit Data Sets (PDS)

Product: SINAMICS G120C, Version: 4710100 , Language: eng, Type: PDS p0124[0...n] CU detection via LED / CU detection LED
p0201[0...n] Power unit code number / PU code no
r0204[0...n] Power unit hardware properties / PU HW property

2.3.5 Encoder Data Sets (EDS)

Product: SINAMICS G120C, Version: 4710100, Language: eng, Type: EDS p0422[0...n] Absolute encoder linear measuring step resolution / Enc abs meas step

2.4 BICO parameters (connectors/binectors)

2.4.1 \quad Binector inputs (BI)

Product: SINAMICS G120C, Version: 4710100, Language: eng, Type: BI
p0043 BI: Enable energy usage display / Enab energy usage
p0730 BI: CU signal source for terminal DO 0 / CU S_src DO 0
p0731 BI: CU signal source for terminal DO 1 / CU S_src DO 1
p0782[0...1] BI: CU analog outputs invert signal source / CU AO inv S_src
p0806 BI: Inhibit master control / PcCtrl inhibit
p0810 BI: Command data set selection CDS bit 0 / CDS select., bit 0
p0820[0...n] BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0840[0...n] BI: ON / OFF (OFF1) / ON / OFF (OFF1)
p0844[0...n] BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
p0845[0...n] BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2
p0848[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
p0849[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
p0852[0...n] BI: Enable operation/inhibit operation / Enable operation
p0854[0...n] BI: Control by PLC/no control by PLC / Master ctrl by PLC
p0855[0...n] BI: Unconditionally release holding brake / Uncond open brake
p0856[0...n] BI: Enable speed controller / n_ctrl enable
p0858[0...n] BI: Unconditionally close holding brake / Uncond close brake
p0860 BI: Line contactor feedback signal / Line contact feedb
p0870 BI: Close main contactor / Close main cont
p1020[0...n] BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0
p1021[0...n] BI: Fixed speed setpoint selection Bit $1 / n _$set_fixed Bit 1
p1022[0...n] BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2
p1023[0...n] BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3
p1035[0...n] BI: Motorized potentiometer setpoint raise / Mop raise
p1036[0...n] BI: Motorized potentiometer lower setpoint / Mop lower
p1043[0...n] BI: Motorized potentiometer accept setting value / MotP acc set val
p1055[0...n] BI: Jog bit $0 / \mathrm{Jog}$ bit 0
p1056[0...n] BI: Jog bit $1 / \mathrm{Jog}$ bit 1
p1110[0...n] BI: Inhibit negative direction / Inhib neg dir
p1111[0...n] BI: Inhibit positive direction / Inhib pos dir
p1113[0...n] BI: Setpoint inversion / Setp inv
p1140[0...n] BI: Enable ramp-function generator/inhibit ramp-function generator / Enable RFG
p1141[0...n] BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG
p1142[0...n] BI: Enable setpoint/inhibit setpoint / Setpoint enable
p1201[0...n] Bl: Flying restart enable signal source / Fly_res enab S_src
p1230[0...n] BI: DC braking activation / DC brake act
p1502[0...n] BI: Freeze moment of inertia estimator / J_estim freeze
p2080[0...15] BI: Binector-connector converter status word 1 / Bin/con ZSW1
p2103[0...n] BI: 1st acknowledge faults / 1st acknowledge
p2104[0...n] BI: 2nd acknowledge faults / 2nd acknowledge
p2106[0...n] BI: External fault 1 / External fault 1
p2112[0...n] BI: External alarm 1 / External alarm 1
p2200[0...n] BI: Technology controller enable / Tec_ctrl enable
p2220[0...n] BI: Technology controller fixed value selection bit $0 /$ Tec_ctrl sel bit 0
p2221[0...n] BI: Technology controller fixed value selection bit $1 /$ Tec_ctrl sel bit 1
p2222[0...n] BI: Technology controller fixed value selection bit $2 /$ Tec_ctrl sel bit 2
p2223[0...n] BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3
p2235[0...n] BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise

p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower
p2286[0...n]	BI: Hold technology controller integrator / Tec_ctr integ hold
p2290[0...n]	BI: Technology controller limiting enable / Tec_ctrl lim enab
p3330[0...n]	BI: $2 / 3$ wire control command $1 / 2 / 3$ wire cmd 1
p3331[0...n]	$\mathrm{BI}: 2 / 3$ wire control command $2 / 2 / 3$ wire cmd 2
p3332[0...n]	BI : $2 / 3$ wire control command $3 / 2 / 3$ wire cmd 3
p3340[0...n]	BI: Limit switch start / Lim switch start
p3342[0...n]	BI: Limit switch plus / Lim switch plus
p3343[0...n]	BI: Limit switch minus / Lim switch minus
p5614	BI : Pe set switching-on inhibited signal source / Pe sw-on_inh s_src
p8542[0...15]	BI: Active STW1 in the BOP/IOP manual mode / STW1 act OP
p8558	BI: Select IOP manual mode / Sel IOP man mode
p8785	BI: CAN status word bit 8 / Status word bit 8
p8786	BI: CAN status word bit 14 / Status word bit 14
p8787	BI: CAN status word bit 15 / Status word bit 15
p20030[0...3]	BI: AND 0 inputs / AND 0 inputs
p20034[0...3]	BI: AND 1 inputs / AND 1 inputs
p20038[0...3]	BI: AND 2 inputs / AND 2 inputs
p20042[0...3]	BI: AND 3 inputs / AND 3 inputs
p20046[0...3]	BI: OR 0 inputs / OR 0 inputs
p20050[0...3]	BI: OR 1 inputs / OR 1 inputs
p20054[0...3]	BI: OR 2 inputs / OR 2 inputs
p20058[0...3]	BI: OR 3 inputs / OR 3 inputs
p20062[0...3]	BI : XOR 0 inputs / XOR 0 inputs
p20066[0...3]	BI : XOR 1 inputs / XOR 1 inputs
p20070[0...3]	BI: XOR 2 inputs / XOR 2 inputs
p20074[0...3]	BI: XOR 3 inputs / XOR 3 inputs
p20078	BI: NOT 0 input I / NOT 0 input I
p20082	BI: NOT 1 input I / NOT 1 input I
p20086	BI: NOT 2 input I / NOT 2 input I
p20090	BI: NOT 3 input I / NOT 3 input I
p20138	BI: MFP 0 input pulse I / MFP 0 inp_pulse I
p20143	BI: MFP 1 input pulse I / MFP 1 inp_pulse I
p20148	BI: PCL 0 input pulse I / PCL 0 inp_pulse I
p20153	BI: PCL 1 input pulse I / PCL 1 inp_pulse I
p20158	BI: PDE 0 input pulse I / PDE 0 inp_pulse I
p20163	BI: PDE 1 input pulse I / PDE 1 inp_pulse I
p20168	BI: PDF 0 input pulse I / PDF 0 inp_pulse I
p20173	BI: PDF 1 input pulse I / PDF 1 inp_pulse I
p20178[0...1]	BI : PST 0 inputs / PST 0 inputs
p20183[0...1]	BI: PST 1 inputs / PST 1 inputs
p20188[0...1]	BI: RSR 0 inputs / RSR 0 inputs
p20193[0...1]	BI: RSR 1 inputs / RSR 1 inputs
p20198[0...3]	BI: DFR 0 inputs / DFR 0 inputs
p20203[0...3]	BI: DFR 1 inputs / DFR 1 inputs
p20208[0...1]	BI: BSW 0 inputs / BSW 0 inputs
p20209	BI: BSW 0 switch setting I / BSW 0 sw_setting
p20213[0...1]	BI: BSW 1 inputs / BSW 1 inputs
p20214	BI: BSW 1 switch setting I / BSW 1 sw_setting
p20219	BI: NSW 0 switch setting I / NSW 0 sw_setting
p20224	BI: NSW 1 switch setting I / NSW 1 sw_setting
p20245	BI: PT1 0 accept setting value S / PT1 0 acc set val
p20251	BI: PT1 1 accept setting value S / PT1 1 acc set val
p20260	BI : INT 0 accept setting value $\mathrm{S} / \mathrm{INT} 0$ acc set val
p20300	BI: NOT 4 input I / NOT 4 input I

p20304	BI: NOT 5 input I / NOT 5 input I
p20324[0...1]	$\mathrm{BI}:$ RSR 2 inputs / RSR 2 inputs
p20329[0...3]	$\mathrm{BI}:$ DFR 2 inputs / DFR 2 inputs
p20334	$\mathrm{BI}:$ PDE 2 input pulse I / PDE 2 inp_pulse I
p20339	$\mathrm{BI}:$ PDE 3 input pulse I / PDE 3 inp_pulse I
p20344	$\mathrm{BI}:$ PDF 2 input pulse I / PDF 2 inp_pulse I
p20349	$\mathrm{BI}:$ PDF 3 input pulse I / PDF 3 inp_pulse I
p20354	$\mathrm{BI}:$ MFP 2 input pulse I / MFP 2 inp_pulse I
p20359	BI: MFP 3 input pulse I / MFP 3 inp_pulse I

2.4.2 Connector inputs (CI)

Product: SINAMICS G120C, Version: 4710100 , Language: eng, Type: Cl	
p0771[0...1]	$\mathrm{Cl}: \mathrm{CU}$ analog outputs signal source / CU AO S_src
p1044[0...n]	Cl : Motorized potentiometer setting value / Mop set val
p1070[0...n]	Cl : Main setpoint / Main setpoint
p1071[0...n]	CI: Main setpoint scaling / Main setp scal
p1075[0...n]	CI: Supplementary setp / Suppl setp
p1076[0...n]	Cl : Supplementary setpoint scaling / Suppl setp scal
p1106[0...n]	CI: Minimum speed signal source / n_min s_src
p1138[0...n]	CI: Ramp-function generator ramp-up time scaling / RFG t_RU scal
p1139[0...n]	CI: Ramp-function generator ramp-down time scaling / RFG t_RD scal
p1330[0...n]	CI: U/f control independent voltage setpoint / Uf U_set independ.
p1352[0...n]	CI : Motor holding brake starting frequency signal source / Brake f_start
p1475[0...n]	Cl : Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB
p1511[0...n]	Cl : Supplementary torque 1 / M_suppl 1
p1512[0...n]	Cl : Supplementary torque 1 scaling / M_suppl 1 scal
p1522[0...n]	Cl : Torque limit upper / M_max upper
p1523[0...n]	CI : Torque limit lower / M_max lower
p1552[0...n]	CI : Torque limit upper scaling without offset / M_max up w/o offs
p1554[0...n]	Cl : Torque limit lower scaling without offset / M_max low w/o offs
p2016[0...3]	CI : Comm IF USS PZD send word / Comm USS send word
p2051[0...16]	CI : PROFIdrive PZD send word / PZD send word
p2061[0...15]	CI: PROFIBUS PZD send double word / PZD send DW
p2099[0...1]	CI: Connector-binector converter signal source / Con/bin S_src
p2253[0...n]	Cl : Technology controller setpoint 1 / Tec_ctrl setp 1
p2254[0...n]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2
p2264[0...n]	CI : Technology controller actual value / Tec_ctrl act val
p2289[0...n]	CI: Technology controller precontrol signal / Tec_ctr prectr_sig
p2296[0...n]	Cl : Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src
p2298[0...n]	Cl : Technology controller minimum limit signal source / Tec_ctrl min_I s_s
p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs
p8543	CI : Active speed setpoint in the BOP/IOP manual mode / N_act act OP
p8746[0...15]	CI: CAN free PZD send objects 16 bit / Free PZD send 16
p8748[0...7]	CI: CAN free PZD send objects 32 bit / Free PZD send 32
p20094[0...3]	CI : ADD 0 inputs / ADD 0 inputs
p20098[0...3]	CI : ADD 1 inputs / ADD 1 inputs
p20102[0...1]	CI : SUB 0 inputs / SUB 0 inputs
p20106[0...1]	CI: SUB 1 inputs / SUB 1 inputs
p20110[0...3]	CI: MUL 0 inputs / MUL 0 inputs
p20114[0...3]	CI: MUL 1 inputs / MUL 1 inputs
p20118[0...1]	CI: DIV 0 inputs / DIV 0 inputs
p20123[0...1]	CI: DIV 1 inputs / DIV 1 inputs

p20123[0...1] CI: DIV 1 inputs / DIV 1 inputs

p20128	CI: AVA 0 input X / AVA 0 input X
p20133	CI: AVA 1 input X / AVA 1 input X
p20218[0...1]	CI: NSW 0 inputs / NSW 0 inputs
p20223[0...1]	CI: NSW 1 inputs / NSW 1 inputs
p20228	CI: LIM 0 input X / LIM 0 input X
p20236	CI: LIM 1 input X / LIM 1 input X
p20244[0...1]	CI: PT1 0 inputs / PT1 0 inputs
p20250[0...1]	CI: PT1 1 inputs / PT1 1 inputs
p20256[0...1]	CI : INT 0 inputs / INT 0 inputs
p20266	CI: LVM 0 input X / LVM 0 input X
p20275	CI: LVM 1 input X / LVM 1 input X
p20284	CI : DIF 0 input X / DIF 0 input X
p20308[0...3]	CI : ADD 2 inputs / ADD 2 inputs
p20312[0...1]	CI: NCM 0 inputs / NCM 0 inputs
p20318[0...1]	CI: NCM 1 inputs / NCM 1 inputs
p20372	CI: PLI 0 input X / PLI 0 input X
p20378	CI: PLI 1 input X / PLI 1 input X

2.4.3 Binector outputs (BO)

Product: SINAMICS G120C, Version: 4710100, Language: eng, Type: BO r0751.0...9 BO: CU analog inputs status word / CU AI status word r0785.0... 1 BO: CU analog outputs status word / CU AO ZSW
r0807.0 BO: Master control active / PcCtrl active
r1025.0 BO: Fixed speed setpoint status / n_setp_fix status
r2043.0... 2 BO: PROFIdrive PZD state / PD PZD state
r2090.0... 15 BO: PROFIdrive PZD1 receive bit-serial / PZD1 recv bitw
r2091.0... 15 BO: PROFIdrive PZD2 receive bit-serial / PZD2 recv bitw
r2092.0...15 BO: PROFIdrive PZD3 receive bit-serial / PZD3 recv bitw
r2093.0... 15 BO: PROFIdrive PZD4 receive bit-serial / PZD4 recv bitw
r2094.0... 15 BO: Connector-binector converter binector output / Con/bin outp
r2095.0... 15 BO: Connector-binector converter binector output / Con/bin outp
r8540.0... 15 BO: STW1 from IOP in the manual mode / STW1 IOP
r20031 BO: AND 0 output Q / AND 0 output Q
r20035 BO: AND 1 output Q / AND 1 output Q
r20039 BO: AND 2 output Q / AND 2 output Q
r20043 BO: AND 3 output Q / AND 3 output Q
r20047 BO: OR 0 output Q / OR 0 output Q
r20051 BO: OR 1 output Q / OR 1 output Q
r20055 BO: OR 2 output Q / OR 2 output Q
r20059 BO: OR 3 output Q / OR 3 output Q
r20063 BO: XOR 0 output Q / XOR 0 output Q
r20067 BO: XOR 1 output Q / XOR 1 output Q
r20071 BO: XOR 2 output Q / XOR 2 output Q
r20075 BO: XOR 3 output Q / XOR 3 output Q
r20079 BO: NOT 0 inverted output / NOT 0 inv output
r20083 BO: NOT 1 inverted output / NOT 1 inv output
r20087 BO: NOT 2 inverted output / NOT 2 inv output
r20091 BO: NOT 3 inverted output / NOT 3 inv output
r20120 BO: DIV 0 divisor is zero QF / DIV 0 divisor=0 QF
r20125 BO: DIV 1 divisor is zero QF / DIV 1 divisor=0 QF
r20130 BO: AVA 0 input negative SN / AVA 0 input neg SN
r20135 BO: AVA 1 input negative SN / AVA 1 input neg SN
r20140 BO: MFP 0 output Q / MFP 0 output Q

BO: RSR 1 inverted output QN / RSR 1 inv outp QN
r20199 BO: DFR 0 output Q / DFR 0 output Q
r20200 BO: DFR 0 inverted output QN / DFR 0 inv outp QN
r20204
r20326 BO: RSR 2 inverted output QN / RSR 2 inv outp QN
r20330 BO: DFR 2 output Q / DFR 2 output Q
r20331 BO: DFR 2 inverted output QN / DFR 2 inv outp QN
r20336 BO: PDE 2 output Q / PDE 2 output Q
r20341 BO: PDE 3 output Q / PDE 3 output Q
r20346 BO: PDF 2 output Q / PDF 2 output Q
r20351 BO: PDF 3 output Q / PDF 3 output Q
r20356 BO: MFP 2 output Q / MFP 2 output Q
r20361 BO: MFP 3 output Q / MFP 3 output Q

2.4.4 Connector outputs (CO)

Product: SINAM	120C, Version: 4710100, Language: eng, Type: CO
r0021	CO: Actual speed smoothed / Actual speed
r0025	CO: Output voltage smoothed / U_outp smooth
r0026	CO: DC link voltage smoothed / Vdc smooth
r0027	CO: Absolute actual current smoothed / Motor current
r0032	CO: Active power actual value smoothed / Power
r0034	CO: Motor utilization thermal / Mot_util therm
r0035	CO: Motor temperature / Mot temp
r0036	CO: Power unit overload I2t / PM overload I2t
r0037[0...19]	CO: Power unit temperatures / PM temperatures
r0039[0...2]	CO: Energy display / Energy display
r0042[0...2]	CO: Process energy display / Proc energy disp
r0060	CO: Speed setpoint before the setpoint filter / n _set before filt.
r0062	CO: Speed setpoint after the filter / n_set after filter
r0063[0...2]	CO: Actual speed / Actual speed
r0064	CO: Speed controller system deviation / n_ctrl sys dev
r0066	CO: Output frequency / f_outp
r0067	CO: Output current maximum / Current max
r0068[0...1]	CO: Absolute current actual value / I_act abs val
r0069[0...8]	CO: Phase current actual value / I_phase act val
r0070	CO: Actual DC link voltage / Vdc act val
r0072	CO: Output voltage / U_output
r0074	CO: Modulat_depth / Mod_depth
r0075	CO: Current setpoint field-generating / Id_set
r0076	CO: Current actual value field-generating / Id_act
r0077	CO: Current setpoint torque-generating / lq_set
r0078	CO: Current actual value torque-generating / Iq_act
r0079	CO: Torque setpoint / M_set
r0080[0...1]	CO: Torque actual value / Actual torque
r0081	CO: Torque utilization / M_Utilization
r0082[0...2]	CO: Active power actual value / P_act
r0083	CO: Flux setpoint / Flex setp
r0084[0...1]	CO: Flux actual value / Flux act val
r0087	CO: Actual power factor / Cos phi act
r0289	CO: Maximum power unit output current / PU I_outp max
r0752[0...1]	CO: CU analog inputs input voltage/current actual / CU AI U/I_inp act
r0755[0...1]	CO: CU analog inputs actual value in percent / CU AI value in \%
p0791[0...1]	CO: Fieldbus analog outputs / Fieldbus AO
r0944	CO: Counter for fault buffer changes / Fault buff change
p1001[0...n]	CO: Fixed speed setpoint $1 / \mathrm{n}$ _set_fixed 1
p1002[0...n]	CO: Fixed speed setpoint $2 / n$ n_set_fixed 2
p1003[0...n]	CO: Fixed speed setpoint $3 / n$ set_fixed 3
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4
p1005[0...n]	CO: Fixed speed setpoint $5 / n$ n_set_fixed 5
p1006[0...n]	CO: Fixed speed setpoint $6 / n$ set_fixed 6
p1007[0...n]	CO: Fixed speed setpoint $7 / n$ n_set_fixed 7
p1008[0...n]	CO: Fixed speed setpoint $8 / \mathrm{n}$ _set_fixed 8
p1009[0...n]	CO: Fixed speed setpoint $9 / n$ set_fixed 9
p1010[0...n]	CO: Fixed speed setpoint $10 / \mathrm{n}$ _set_fixed 10
p1011[0...n]	CO: Fixed speed setpoint $11 / \mathrm{n}$ _set_fixed 11
p1012[0...n]	CO: Fixed speed setpoint $12 / \mathrm{n}$ _set_fixed 12
p1013[0...n]	CO: Fixed speed setpoint $13 / \mathrm{n}$ _set_fixed 13
p1014[0...n]	CO: Fixed speed setpoint $14 / \mathrm{n}$ _set_fixed 14
p1015[0...n]	CO: Fixed speed setpoint $15 / n$ set_fixed 15

r1024 CO: Fixed speed setpoint effective / Speed fixed setp
r1045 CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG
$r 1050$ CO: Motorized potentiometer setpoint after ramp-function generator / Mot poti setpoint
r1073 CO: Main setpoint effective / Main setpoint eff
$r 1077$ CO: Supplementary setpoint effective / Suppl setpoint eff
$r 1078$ CO: Total setpoint effective / Total setpoint eff
p1083[0...n] CO: Speed limit in positive direction of rotation / n_limit pos
r1084
p1086[0...n]
r1087
r1112
r1114
r1119
r1149
r1150
r1170
r1258
r1298
r1337
r1343
r1348
p1351[0...n]
r1438
r1445
r1482
r1493
r1508
r1516
p1520[0...n]
p1521[0...n]
p1524[0...n]
p1525[0...n]
r1526
r1527
r1538
r1539
r1547[0...1] CO: Torque limit for speed controller output / M_max outp n_ctrl
p1563[0...n] CO: Mom. of inertia estimator load torque direction of rotation pos. / J_est M pos
p1564[0...n] CO: Mom. of inertia estimator load torque direction of rotation neg. / J_est M neg
p1570[0...n] CO: Flux setpoint / Flex setp
r1598
r1732[0...1] CO: Direct-axis voltage setpoint / Direct U set
r1733[0...1] CO: Quadrature-axis voltage setpoint / Quad U set
r1801[0...1] CO: Pulse frequency / Pulse frequency
r2050[0...11] CO: PROFIBUS PZD receive word / PZD recv word
r2060[0...10] CO: PROFIdrive PZD receive double word / PZD recv DW
r2089[0...4] CO: Send binector-connector converter status word / Bin/con ZSW send
r2120 CO: Sum of fault and alarm buffer changes / Sum buffer changed
r2131 CO: Actual fault code / Act fault code
r2132 CO: Actual alarm code / Actual alarm code
r2169 CO: Actual speed smoothed signals / n_act smth message
p2201[0...n] CO: Technology controller fixed value 1 / Tec_ctrl fix val1
p2202[0...n] CO: Technology controller fixed value $2 /$ Tec_ctr fix val 2
p2203[0...n] CO: Technology controller fixed value 3 / Tec_ctr fix val 3
p2204[0...n] CO: Technology controller fixed value 4 / Tec_ctr fix val 4
p2205[0...n] CO: Technology controller fixed value 5 / Tec_ctr fix val 5
p2206[0...n] CO: Technology controller fixed value $6 /$ Tec_ctr fix val 6
p2207[0...n] CO: Technology controller fixed value 7 / Tec_ctr fix val 7
p2208[0...n] CO: Technology controller fixed value 8 / Tec_ctr fix val 8
p2209[0...n] CO: Technology controller fixed value $9 /$ Tec_ctr fix val 9
p2210[0...n] CO: Technology controller fixed value 10 / Tec_ctr fix val 10
p2211[0...n] CO: Technology controller fixed value 11 / Tec_ctr fix val 11
p2212[0...n] CO: Technology controller fixed value 12 / Tec_ctr fix val 12
p2213[0...n] CO: Technology controller fixed value 13 / Tec_ctr fix val 13
p2214[0...n] CO: Technology controller fixed value 14 / Tec_ctr fix val 14
p2215[0...n] CO: Technology controller fixed value 15 / Tec_ctr fix val 15
r2224
r2245
r2250
r2260
r2262
r2266
r2272
r2273
p2291
p2292
r2294
p2295
r2344
p2900[0...n]
CO: Technology controller fixed value effective / Tec_ctr FixVal eff
CO: Technology controller mot. potentiometer setpoint before RFG / Tec_ctr mop befRFG
CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG
CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG
CO: Technology controller setpoint after filter / Tec_ctr set aftFIt
CO: Technology controller actual value after filter / Tec_ctr act aftFIt
CO: Technology controller actual value scaled / Tech_ctrl act scal
CO: Technology controller system deviation / Tec_ctrl sys_dev
CO: Technology controller maximum limiting / Tec_ctrl max_lim
CO: Technology controller minimum limiting / Tec_ctrl min_lim
CO: Technology controller output signal / Tec_ctrl outp_sig
CO: Technology controller output scaling / Tec_ctrl outp scal
CO: Technology controller last speed setpoint (smoothed) / Tec_ctrl n_setp_sm
CO: Fixed value 1 [\%] / Fixed value 1 [\%]
p2901[0...n]
CO: Fixed value 2 [\%] / Fixed value 2 [\%]
r2902[0...14]
CO: Fixed values [\%] / Fixed values [\%]
p2930[0...n]
CO: Fixed value M [Nm] / Fixed value M [Nm]
r3841
r8541
CO: Friction characteristic output / Frict outp
r8745[0...15] CO: CAN free PZD receive objects 16 bit / Free PZD recv 16
r8747[0...7] CO: CAN free PZD receive objects 32 bit / Free PZD recv 32
r8762 CO: CAN operating mode display / Op mode display
r8784 CO: CAN status word / Status word
r8792[0] CO: CAN velocity mode 116 setpoint / Vel mod I16 set
r8796[0] CO: CAN profile velocity mode 132 setpoints / Pr vel mo 132 set
r8797[0] CO: CAN profile torque mode I16 setpoints / Pr Tq mod I16 set
r20095 CO: ADD 0 output Y / ADD 0 output Y
r20099 CO: ADD 1 output Y / ADD 1 output Y
r20103 CO: SUB 0 difference Y / SUB 0 difference Y
r20107 CO: SUB 1 difference Y / SUB 1 difference Y
r20111 CO: MUL 0 product $Y /$ MUL 0 product Y
r20115 CO: MUL 1 product $\mathrm{Y} / \mathrm{MUL} 1$ product Y
r20119[0...2] CO: DIV 0 quotient / DIV 0 quotient
r20124[0...2] CO: DIV 1 quotient / DIV 1 quotient
r20129
r20134
r20220
r20225
r20231
r20239
r20247
r20253
r20261 CO: INT 0 output $\mathrm{Y} /$ INT 0 output Y
r20286 CO: DIF 0 output $\mathrm{Y} /$ DIF 0 output Y

r20309	CO: ADD 2 output Y / ADD 2 output Y
r20373	CO: PLI 0 output Y / PLI 0 output Y
r20379	CO: PLI 1 output Y / PLI 1 output Y

2.4.5 Connector/binector outputs (CO/BO)

Product: SINAMIC	G120C, Version: 4710100, Language: eng, Type: CO/BO
r0046.0... 31	CO/BO: Missing enable signal / Missing enable sig
r0050.0... 1	CO/BO: Command Data Set CDS effective / CDS effective
r0051.0	CO/BO: Drive Data Set DDS effective / DDS effective
r0052.0... 15	CO/BO: Status word 1 / ZSW 1
r0053.0... 11	CO/BO: Status word 2 / ZSW 2
r0054.0... 15	CO/BO: Control word 1 / STW 1
r0055.0... 15	CO/BO: Supplementary control word / Suppl STW
r0056.0... 15	CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl
r0722.0... 11	CO/BO: CU digital inputs status / CU DI status
r0723.0... 11	CO/BO: CU digital inputs status inverted / CU DI status inv
r0835.2... 8	CO/BO: Data set changeover status word / DDS_ZSW
r0836.0... 1	CO/BO: Command Data Set CDS selected / CDS selected
r0837.0	CO/BO: Drive Data Set DDS selected / DDS selected
r0863.0... 1	CO/BO: Drive coupling status word/control word / CoupleZSW/STW
r0898.0... 14	CO/BO: Control word sequence control / STW seq_ctrl
r0899.0... 13	CO/BO: Status word sequence control / ZSW seq_ctrl
r1198.0... 15	CO/BO: Control word setpoint channel / STW setpoint chan
r1239.8... 13	CO/BO: DC braking status word / DCBRK ZSW
r1406.4... 15	CO/BO: Control word speed controller / STW n_ctrl
r1407.0... 27	CO/BO: Status word speed controller / ZSW n_ctrl
r1408.0... 14	CO/BO: Status word current controller / ZSW I_ctrl
r1838.0... 15	CO/BO: Gating unit status word 1 / Gating unit ZSW1
r1992.0... 15	CO/BO: PolID diagnostics / PolID diag
r2129.0... 15	CO/BO: Faults/alarms trigger word / F/A trigger word
r2135.12... 15	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2
r2138.7... 15	CO/BO: Control word faults/alarms / STW fault/alarm
r2139.0... 15	CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1
r2197.0... 13	CO/BO: Status word monitoring 1 / ZSW monitor 1
r2198.0... 13	CO/BO: Status word monitoring 2 / ZSW monitor 2
r2199.0... 11	CO/BO: Status word monitoring 3 / ZSW monitor 3
r2225.0	CO/BO: Technology controller fixed value selection status word / Tec_ctr FixVal ZSW
r2349.0... 13	CO/BO: Technology controller status word / Tec_ctrl status
r3113.0... 15	CO/BO: NAMUR message bit bar / NAMUR bit bar
r3333.0... 3	CO/BO: $2 / 3$ wire control control word / $2 / 3$ wire STW
r3344.0... 5	CO/BO: Limit switch status word / Lim sw ZSW
r3840.0... 8	CO/BO: Friction characteristic status word / Friction ZSW
r3859.0	CO/BO: Compound braking/DC quantity control status word / Comp-br/DC_ctr ZSW
r5389.0... 8	CO/BO: Mot_temp status word faults/alarms / Mot_temp ZSW F/A
r5613.0... 1	CO/BO: Pe energy-saving active/inactive / Pe save act/inact
r7760.0... 12	CO/BO: Write protection/know-how protection status / Wr_prot/KHP stat
r8795.0... 15	CO/BO: CAN control word / Control word
r9401.0... 3	CO/BO: Safely remove memory card status / Mem_card rem stat
r9772.0... 21	CO/BO: SI status (processor 1) / SI status P1
r9773.0... 31	CO/BO: SI status (processor $1+$ processor 2) / SI status P1+P2
r9872.0... 21	CO/BO: SI status (processor 2) / SI Status P2

2.5 Parameters for write protection and know-how protection

2.5.1 Parameters with "WRITE_NO_LOCK"

The following list contains the parameters with the "WRITE_NO_LOCK" attribute.
These parameters are not affected by the write protection.

SINAMIC	20C, Version: 4710100, Language: eng, Type: WRITE_NO_LOCK
p0003	Access level / Acc_level
p0010	Drive commissioning parameter filter / Drv comm. par_filt
p0124[0...n]	CU detection via LED / CU detection LED
p0791[0...1]	CO: Fieldbus analog outputs / Fieldbus AO
p0970	Reset drive parameters / Drive par reset
p0971	Save parameters / Save par
p0972	Drive unit reset / Drv_unit reset
p2111	Alarm counter / Alarm counter
p3950	Service parameter / Serv par
p3981	Acknowledge drive object faults / Ackn DO faults
p3985	Master control mode selection / PcCtrl mode select
p7761	Write protection / Write protection
p8805	Identification and maintenance 4 configuration / I\&M 4 config
p8806[0...53]	Identification and Maintenance $1 /$ I\&M 1
p8807[0...15]	Identification and Maintenance 2 / I\&M 2
p8808[0...53]	Identification and Maintenance 3 / I\&M 3
p8809[0...53]	Identification and Maintenance 4 / I\&M 4
p9400	Safely remove memory card / Mem_card rem
p9484	BICO interconnections search signal source / BICO S_src srch

2.5.2 Parameters with "KHP_WRITE_NO_LOCK"

The following list contains the parameters with the "KHP_WRITE_NO_LOCK" attribute.
These parameters are not affected by the know-how protection.

Product: SINAMICS G120C, Version: 4710100, Language: eng, Type: KHP_WRITE_NO_LOCK	
p0003	Access level / Acc_level
p0010	Drive commissioning parameter filter / Drv comm. par_filt
p0124[0...n]	CU detection via LED / CU detection LED
p0791[0...1]	CO: Fieldbus analog outputs / Fieldbus AO
p0970	Reset drive parameters / Drive par reset
p0971	Save parameters / Save par
p0972	Drive unit reset / Drv_unit reset
p2040	Fieldbus interface monitoring time / Fieldbus t_monit
p2111	Alarm counter / Alarm counter
p3950	Service parameter / Serv par
p3981	Acknowledge drive object faults / Ackn DO faults
p3985	Master control mode selection / PcCtrl mode select
p7761	Write protection / Write protection
p8805	Identification and maintenance 4 configuration / I\&M 4 config
p8806[0...53]	Identification and Maintenance $1 /$ I\&M 1
p8807[0...15]	Identification and Maintenance 2 / I\&M 2
p8808[0...53]	Identification and Maintenance $3 /$ I\&M 3
p8809[0...53]	Identification and Maintenance $4 /$ I\&M 4

2.5 Parameters for write protection and know-how protection

p8980	Ethernet/IP profile / Eth/IP profile
p8981	Ethernet/IP ODVA STOP mode / Eth/IP ODVA STOP
p8982	Ethernet/IP ODVA speed scaling / Eth/IP ODVA n scal
p8983	Ethernet/IP ODVA torque scaling / Eth/IP ODVA M scal
p9400	Safely remove memory card / Mem_card rem
p9484	BICO interconnections search signal source / BICO S_src srch

2.5.3 Parameters with "KHP_ACTIVE_READ"

The following list contains the parameters with the "KHP_ACTIVE_READ" attribute.
These parameters can also be read with activated know-how protection.

Product: SINAMICS G120C, Version: 4710100, Language: eng, Type: KHP_ACTIVE_READ	
p0015	Macro drive unit / Macro drv unit
p0100	IEC/NEMA mot stds / IEC/NEMA mot stds
p0170	Number of Command Data Sets (CDS) / CDS count
p0180	Number of Drive Data Sets (DDS) / DDS count
p0300[0...n]	Motor type selection / Mot type sel
p0304[0...n]	Rated motor voltage / Mot U_rated
p0305[0...n]	Rated motor current / Mot I_rated
p0505	Selecting the system of units / Unit sys select
p0595	Technological unit selection / Tech unit select
p0730	BI: CU signal source for terminal DO 0 / CU S_src DO 0
p0731	BI: CU signal source for terminal DO 1 / CU S_src DO 1
p0806	BI: Inhibit master control / PcCtrl inhibit
p0870	BI: Close main contactor / Close main cont
p0922	PROFIdrive PZD telegram selection / PZD telegr_sel
p1080[0...n]	Minimum speed / n_min
p1082[0..n]	Maximum speed / n_max
p1520[0...n]	CO: Torque limit upper / M_max upper
p2000	Reference speed reference frequency / n_ref f_ref
p2001	Reference voltage / Reference voltage
p2002	Reference current / I_ref
p2003	Reference torque / M_ref
p2006	Reference temperature / Ref temp
p2030	Field bus interface protocol selection / Field bus protocol
p2038	PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode
p2079	PROFldrive PZD telegram selection extended / PZD telegr ext
p7763	KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764
p7764[0...n]	KHP OEM exception list / KHP OEM excep list
p9601	SI enable functions integrated in the drive (processor 1) / SI enable fct P1
p9810	SI PROFIsafe address (processor 2) / SI PROFIsafe P2

$2.6 \quad$ Quick commissioning ($\mathrm{p} 0010=1$)

The parameters required for the quick commissioning (p0010 = 1) are shown in the following table:

Table 2-7 Quick commissioning (p0010 = 1)

Par. no.	Name		Access level	Can be changed
p0010	Drive, commissioning parameter filter	1		C(1)T
p0015	Macro drive unit	1		C(1)
p0096	Application class	1		C(1)
p0100	IEC/NEMA mot stds	1		C(1)
p0205	Power unit application	1		C(1,2)
p0230	Drive filter type, motor side	1		C(1,2)
p0300	Motor type selection	2		C(1,3)
p0301	Motor code number selection	2		C(1,3)
p0304	Rated motor voltage	1		C(1,3)
p0305	Rated motor current	1		C(1,3)
p0306	Number of motors connected in parallel	1		C(1,3)
p0307	Rated motor power	1		C(1,3)
p0308	Rated motor power factor	1		C(1,3)
p0309	Rated motor efficiency	1		C(1,3)
p0310	Rated motor frequency	1		C(1,3)
p0311	Rated motor speed	1		C(1,3)
p0316	Motor torque constant	4		C(1,3) UT
p0322	Maximum motor speed	1		C(1,3)
p0323	Maximum motor current	1		C(1,3)
p0335	Motor cooling type	2		$\mathrm{C}(1,3) \mathrm{T}$
p0500	Technology application	2	G120C CAN G120C DP G120C USS/MB G120C PN	$\mathrm{C}(1,5) \mathrm{T}$
p0500	Technology application	4	G120C PN	$\mathrm{C}(1,5) \mathrm{T}$
p0640	Current limit	2		C(1,3)UT
p0922	PROFIdrive telegram selection	1		C(1)T
p0970	Reset drive parameters	1		$\mathrm{C}(1,30)$
p1080	Minimum speed	1		C(1)T
p1082	Maximum rotation speed	1		C(1)T
p1120	Ramp-function generator ramp-up time	1		C(1)UT
p1121	Ramp-function generator ramp-down time	1		C(1)UT
p1135	OFF3 ramp-down time	2		C(1)UT

Table 2-7 Quick commissioning (p0010 = 1), continued

Par. no.	Name	Access level		Can be changed
p1300	Open-loop/closed-loop control operating mode	2		C(1)T
p1900	Motor data identification and rotating measurement	2		C(1)T
p1905	Parameter tuning selection	1		C(1)T
p3900	Completion of quick commissioning	1		$C(1)$

If $\mathrm{p} 0010=1$ is selected, p0003 (user access level) can be used to select the parameters that are to be accessed.

At the end of the quick commissioning, set p3900 $=1$ to perform the required motor calculations and reset all other parameters (not included in p0010 $=1$) to their default settings.

Note

This only applies for the quick commissioning.

Function diagrams

Content

3.1 Table of contents 442
3.2 Explanations on the function diagrams 448
3.3 Input/output terminals 453
3.4 PROFlenergy 462
3.5 Communication PROFIdrive (PROFIBUS/PROFINET), EtherNet/IP 465
3.6 CANopen communication 481
3.7 Communication fieldbus interface (USS, Modbus) 488
3.8 Internal control/status words 494
3.9 Brake control 511
3.10 Safety Integrated Basic functions 513
3.11 Safety Integrated PROFIsafe 519
3.12 Setpoint channel 521
3.13 Vector control / U/f control 530
3.14 U/f control, Standard Drive Control (p0096 = 1) 556
3.15 Vector control, Dynamic Drive Control (p0096 = 2) 562
3.16 Technology functions 579
3.17 Free function blocks 582
3.18 Technology controller 603
3.19 Signals and monitoring functions 608
3.20 Diagnostics 620
3.21 Data sets 626

3.1 Table of contents

3.2 Explanations on the function diagrams 448
1020 - Explanation of the symbols (part 1) 449
1021 - Explanation of the symbols (part 2) 450
1022 - Explanation of the symbols (part 3) 451
1030 - Handling BICO technology 452
3.3 Input/output terminals 453
2201 - Connection overview 454
2221 - Digital inputs, electrically isolated (DI 0 ... DI 5) 455
2241 - Digital outputs (DO 0 ... DO 1) 456
2250 - Analog input 0 (AI 0) 457
2255 - Analog inputs as digital input (DI 11) 458
2260 - Analog output 0 (AO 0) 459
2272 - Two-wire control 460
2273 - Three-wire control 461
3.4 PROFlenergy 462
2381 - Control commands and interrogation commands 463
2382 - States 464
3.5 Communication PROFIdrive (PROFIBUS/PROFINET), EtherNet/IP 465
2401 - Overview 466
2410 - PROFIdrive, EtherNet/IP - addresses and diagnostics 467
2420 - PROFIdrive - telegrams and process data (PZD) 468
2440 - PROFIdrive - PZD receive signals interconnection 469
2441 - PROFIdrive - STW1 control word interconnection (p2038 = 2) 470
2442 - PROFIdrive - STW1 control word interconnection (p2038 = 0) 471
2446 - PROFIdrive - STW3 control word interconnection 472
2450 - PROFIdrive - PZD send signals interconnection 473
2451 - PROFIdrive - ZSW1 status word interconnection (p2038 = 2) 474
2452 - PROFIdrive - ZSW1 status word interconnection (p2038 = 0) 475
2456 - PROFIdrive - ZSW3 status word interconnection 476
2468 - PROFIdrive - receive telegram, free interconnection via BICO (p0922 = 999) 477
2470 - PROFIdrive - send telegram, free interconnection BICO (p0922 = 999) 478
2472 - EtherNet/IP - status word, free interconnection 479
2473 - EtherNet/IP - control word / status word interconnection 480
3.6 CANopen communication 481
9204 - Receive telegram, free PDO mapping (p8744 = 2) 482
9206 - Receive telegram, Predefined Connection Set (p8744 = 1) 483
9208 - Send telegram, free PDO mapping (p8744 = 2) 484
9210 - Send telegram, Predefined Connection Set (p8744 = 1) 485
9220 - CANopen control word interconnection 486
9226 - Status word, CANopen (r8784) 487
3.7 Communication fieldbus interface (USS, Modbus) 488
9310 - Configuration, addresses and diagnostics 489
9342 - STW1 control word interconnection 490
9352 - ZSW1 status word interconnection 491
9360 - Receive telegram, free interconnection via BICO (p0922 = 999) 492
9370 - Send telegram, free interconnection via BICO (p0922 = 999) 493
3.8 Internal control/status words 494
2501 - Control word, sequence control (r0898) 495
2503 - Status word, sequence control (r0899) 496
2505 - Control word, setpoint channel (r1198) 497
2510 - Status word 1 (r0052) 498
2512 - Control word 1 (r0054) 499
2513 - Supplementary control word (r0055) 500
2522 - Status word, speed controller (r1407) 501
2526 - Status word, closed-loop control (r0056) 502
2530 - Status word, current control (r1408) 503
2534 - Status word, monitoring functions 1 (r2197) 504
2536 - Status word, monitoring functions 2 (r2198) 505
2537 - Status word, monitoring functions 3 (r2199) 506
2546 - Control word, faults/alarms (r2138) 507
2548 - Status word, faults/alarms 1 and 2 (r2139 and r2135) 508
2610 - Sequence control - Sequencer 509
2634 - Sequence control - missing enable signals, line contactor control 510
3.9 Brake control 511
2701 - Basic brake control 512
3.10 Safety Integrated Basic functions 513
2800 - Parameter manager 514
2802 - Monitoring functions and faults/alarms 515
2804 - Status words 516
2810 - STO (Safe Torque Off) 517
2813 - F-DI (Fail-safe Digital Input) 518
3.11 Safety Integrated PROFIsafe 519
2915 - Standard telegrams 520
3.12 Setpoint channel 521
3001 - Overview 522
3010 - Fixed speed setpoints, binary selection (p1016 = 2) 523
3011 - Fixed speed setpoints, direct selection (p1016 = 1) 524
3020 - Motorized potentiometer 525
3030 - Main/supplementary setpoint, setpoint scaling, jogging 526
3040 - Direction limitation and direction reversal 527
3050 - Skip frequency bands and speed limitations 528
3070 - Extended ramp-function generator 529
3.13 Vector control / U/f control 530
6019 - Application classes (p0096), overview 531
6020 - Speed control and generation of the torque limits, overview 532
6030 - Speed setpoint, acceleration model 533
6035 - Moment of inertia estimator 534
6040 - Speed controller with Kp_n-/Tn_n adaptation 535
6060 - Torque setpoint 536
6220 - Vdc_max controller and Vdc_min controller 537
6300 - U/f control, overview 538
6301 - U/f control, characteristic and voltage boost 539
6310 - U/f control, resonance damping and slip compensation 540
6320 - U/f control, Vdc_max controller 541
6490 - Speed control configuration 542
6491 - Flux control configuration 543
6630 - Upper/lower torque limit 544
6640 - Current/power/torque limits 545
6700 - Current control, overview 546
6710 - Current setpoint filter 547
6714 - Iq and Id controllers 548
6721 - Id setpoint (PMSM, p0300 = 2) 549
6722 - Field weakening characteristic, flux setpoint (ASM, p0300 = 1) 550
6723 - Field weakening controller, flux controller, Id setpoint (ASM, p0300 = 1) 551
6724 - Field weakening controller (PMSM, p0300 = 2) 552
6730 - Interface to the Power Module (ASM, p0300 = 1) 553
6731 - Interface to the Power Module (PMSM, p0300 = 2) 554
6799 - Display signals 555
3.14 U/f control, Standard Drive Control (p0096 = 1) 556
6850 - U/f control, overview (p0096 = 1) 557
6851 - U/f control, characteristic and voltage boost (p0096 = 1) 558
6853 - U/f control, resonance damping and slip compensation (p0096 = 1) 559
6854 - U/f control, Vdc_max controller (p0096 = 1) 560
6856 - U/f control, interface to the Power Module (ASM, p0300 = 1, p0096 = 1) 561
3.15 Vector control, Dynamic Drive Control (p0096 = 2) 562
6820 - Speed control and generation of the torque limits, overview (p0096 = 2) 563
6821 - Current control, overview (p0096 = 2) 564
6822 - Speed setpoint, precontrol balancing, acceleration model (p0096 = 2) 565
6823 - Moment of inertia estimator (p0096 = 2) 566
6824 - Speed controller with Kp_n/Tn_n adaptation (p0096 = 2) 567
6826 - Torque setpoint (p0096 = 2) 568
6827 - Vdc_max controller and Vdc_min controller (p0096 = 2) 569
6828 - Current/power/torque limits (p0096 = 2) 570
6832 - Current setpoint filter (p0096 = 2) 571
6833 - Iq and Id controllers (p0096 = 2) 572
6836 - Id setpoint (PMSM, p0300 = 2xx, p0096 = 2) 573
6837 - Field weakening characteristic, flux setpoint (ASM, p0300 = 1, p0096 = 2) 574
6838 - Field weakening controller, flux controller, Id setpoint (ASM, p0300 = 1, p0096 = 2) 575
6839 - Field weakening controller (PMSM, p0300 = 2xx, p0096 = 2) 576
6841 - Interface to the Power Module (ASM, p0300 = 1, p0096 = 2) 577
6842 - Interface to the Power Module (PMSM, p0300 = 2xx, p0096 = 2) 578
3.16 Technology functions 579
7010 - Friction characteristic 580
7017 - DC braking (ASM, p0300 = 1) 581
3.17 Free function blocks 582
7200 - Sampling times of the runtime groups 583
7210 - AND 0 ... 3 584
7212 - OR 0 ... 3 585
7214 - XOR 0 ... 3 586
7216 - NOT 0 ... 5 587
7220 - ADD 0 ... 2, SUB 0 ... 1 588
7222 - MUL 0 ... 1, DIV 0 ... 1 589
7224 - AVA 0 ... 1 590
7225 - NCM 0 ... 1 591
7226 - PLI 0 ... 1 592
7230 - MFP 0 ... 3, PCL 0 ... 1 593
7232 - PDE 0 ... 3 594
7233 - PDF 0 ... 3 595
7234 - PST 0 ... 1 596
7240 - RSR 0 ... 2, DFR 0 ... 2 597
7250 - BSW 0 ... 1, NSW 0 ... 1 598
7260 - LIM 0 ... 1 599
7262 - PT1 0 ... 1 600
7264 - INT 0, DIF 0 601
7270 - LVM 0 ... 1 602
3.18 Technology controller 603
7950 - Fixed value, binary selection (p2216 = 2) 604
7951 - Fixed value, direct selection (p2216 = 1) 605
7954 - Motorized potentiometer 606
7958 - Closed-loop control 607
3.19 Signals and monitoring functions 608
8005 - Overview 609
8010 - Speed signals 1 610
8011 - Speed signals 2 611
8012 - Torque signals, motor blocked/stalled 612
8016 - Thermal monitoring motor, motor temperature status word faults/alarms 613
8017 - Motor temperature model 1 (I2t) 614
8018 - Motor temperature model 2 615
8019 - Motor temperature model 3 616
8021 - Thermal monitoring, power unit 617
8022 - Monitoring functions 1 618
8023 - Monitoring functions 2 619
3.20 Diagnostics 620
8050 - Overview 621
8060 - Fault buffer 622
8065 - Alarm buffer 623
8070 - Faults/alarms trigger word (r2129) 624
8075 - Faults/alarms configuration 625
3.21 Data sets 626
8560 - Command Data Sets (CDS) 627
8565 - Drive Data Sets (DDS) 628

3.2 Explanations on the function diagrams

Function diagrams

1020 - Explanation of the symbols (part 1) 449
1021 - Explanation of the symbols (part 2) 450
1022 - Explanation of the symbols (part 3) 451
1030 - Handling BICO technology 452

Handling BICO technology

| Binector: | Binectors are binary signals that can be freely interconnected ($\mathrm{BO}=$ Binector Output).
 They represent a bit of a "BO:" display parameter (e.g. bit 15 from r0723). |
| :--- | :--- | :--- |
| Connector: \quadConnectors are "analog signals" that can be freely interconnected (e.g. percentage variables, speeds or torques).
 Connectors are also "CO:" display parameters (CO = Connector Output). | |

Parameterization:

At the signal destination, the required binector or connector is selected using appropriate parameters:
"BI:" parameter for binectors ($\mathrm{BI}=$ Binector Input)
"Cl:" parameter for connectors (CI = Connector Input)

Example:

The main setpoint for the Speed controller (CI: p1070) should be received from the output of the motorized potentiometer
(CO: r1050) and the "jog" command (BI: p1055) from Digital Input DI 0 (BO: r0722.0, Terminal 5 (KI. 5)) on the CU.

3.3 Input/output terminals

Function diagrams

2201 - Connection overview 454
2221 - Digital inputs, electrically isolated (DI 0 ... DI 5) 455
2241 - Digital outputs (DO 0 ... DO 1) 456
2250 - Analog input 0 (AI 0) 457
2255 - Analog inputs as digital input (DI 11) 458
2260 - Analog output 0 (AO 0) 459
2272 - Two-wire control 460
2273 - Three-wire control 461
454

$3.4 \quad$ PROFlenergy

Function diagrams

2381 - Control commands and interrogation commands 463
2382 - States 464

3.5 Communication PROFIdrive (PROFIBUS/PROFINET), EtherNet/IP

Function diagrams
2401 - Overview 466
2410 - PROFIdrive, EtherNet/IP - addresses and diagnostics 467
2420 - PROFIdrive - telegrams and process data (PZD) 468
2440 - PROFIdrive - PZD receive signals interconnection 469
2441 - PROFIdrive - STW1 control word interconnection (p2038 = 2) 470
2442 - PROFIdrive - STW1 control word interconnection (p2038 = 0) 471
2446 - PROFIdrive - STW3 control word interconnection 472
2450 - PROFIdrive - PZD send signals interconnection 473
2451 - PROFIdrive - ZSW1 status word interconnection (p2038 = 2) 474
2452 - PROFIdrive - ZSW1 status word interconnection (p2038 = 0) 475
2456 - PROFIdrive - ZSW3 status word interconnection 476
2468 - PROFIdrive - receive telegram, free interconnection via BICO (p0922 = 999) 477
2470 - PROFIdrive - send telegram, free interconnection BICO (p0922 = 999) 478
2472 - EtherNet/IP - status word, free interconnection 479
2473 - EtherNet/IP - control word / status word interconnection 480
466

1	2	3	4	5	6		7	8
PROFIdrive (PROFIBUS/PROFINET), EtherNet/IP					fp_2401_97	61.vsd	Function diagram	- 2401 -
Overview					05.09.2017	V4.7.9	SINAMICS G120C	

<1> If p0922 = 999 is changed to another value, the telegram is automatically assigned.
If p0922 unequal 999 is changed to p0922 = 999, the "old" telegram assignment is maintained
<2> Freely interconnectable (pre-setting: MELD_NAMUR).
<3> Can be freely connected.
<4> In order to comply with the PROFIdrive profile, PZD1 must be used as control word 1 (STW1) or status word 1 (ZSW1). p2037 = 2 should be set if STW1 is not transferred with PZD1 as specified in the PROFIdrive profile.

<1> When selecting a standard telegram or a manufacturer-specific telegram via p0922, these interconnection parameters
of the command data set CDS are automatically set to 0 .
<2> Data type according to to the PROFIdrive profile: $116=$ Integer16, U16 $=$ Unsigned16
<3> Display parameters for receive data according to [2468]
<4> Only SIEMENS telegram 350.

1	2	3	4	5	6		7	8
PROFIdrive (PROFIBUS/PROFINET), EtherNet/IP					fp_2440_97	64.vsd	Function diagram	- 2440 -
PROFIdrive - PZD receive signals interconnection					05.09.2017	V4.7.9	G120C DP/PN	

Signal sources for PZD send signals			＜1＞			
Signal	Description	PROFIdrive Signal No	Interconnection parameter	Function diagram	Data type	Scaling
zsw1	Status word 1	2	r2089［0］	［2452］	U16	
NIST＿A	Actual speed A（16 bit）	6	r0063［0］	－	116	4000 hex 人 p 2000
IAIST＿GLATT	Absolute actual current，smoothed	51	r0068［1］	［6799］	116	4000 hex 人 p 2002
MIST＿GLATT	Actual torque smoothed	53	r0080［1］	［6799］	116	4000 hex 人 p 2003
PIST＿GLATT	Power factor，smoothed	54	r0082［1］	［6799］	116	4000 hex ¢ p 2004
NIST＿A＿GLATT	Actual speed，smoothed	57	r0063［1］	－	116	4000 hex 人 p 2000
MELD＿NAMUR	VIK－NAMUR message bit bar	58	r3113	－	U16	
FAULT＿CODE	Fault code	301	r2131	［8060］	U16	
WARN＿CODE	Alarm code	303	r2132	［8065］	U16	
zsW3	Status word 3	305	r0053	［2456］	U16	

PZD send word 1．．．8 p2051［0．．．16］WORD r2053［0．．．16］WORD

Telegram assignment according to p0922 ［2420］ 2420］
＜1＞Data type according to the PROFIdrive profile： $116=$ Integer16，U16＝Unsigned16

1	2	3	4	5	6		7	8
PROFIdrive（PROFIBUS／PROFINET），EtherNet／IP					fp＿2450＿97	64．vsd	Function diagram	2450 －
PROFldrive－PZD send signals interconnection					05．09．2017	V4．7．9	G120C DP／PN	

<1> In order to maintain the PROFIdrive profile, receive word 1 must be used as control word (STW1) (due to bit 10 "control requested").
<2> Using the connector-binector converters, the bits can be extracted from two of the PZD receive words 3 to 8 and used as binectors.
applies for words: 4000 hex $=100 \%$
The reference variables p200x apply for the ongoing interconnection ($100 \% \rightarrow$ p200x).
<4> Every PZD word can be assigned a word or a double word. Only one of the 2 interconnection parameters r2050 or r2060 can have a value <> 0 for a PZD word.
<5> When interconnecting a connector output multiple times all the connector inputs must have either Integer or FloatingPoint data type.

1	2	3	4	5	6		7	8
PROFIdrive (PROFIBUS/PROFINET), EtherNet/IP					fp_2468_97	61.vsd	Function diagram	- 2468 -
PROFIdrive - Receive telegram, free interconnection via BICO (p0922 = 999)					05.09.2017	V4.7.9	G120C DP/PN	

Binector-connector converter

1	2	3	4	5	6		7	8
PROFIdrive (PROFIBUS/PROFINET), EtherNet/IP					fp_2472_97_05.vsd		Function diagram	-2472 -
PROFIdrive - Status word, free interconnection					05.09.2017	V4.7.9	G120C DP/PN	2472-

$3.6 \quad$ CANopen communication

Function diagrams

9204 - Receive telegram, free PDO mapping (p8744 = 2) 482
9206 - Receive telegram, Predefined Connection Set (p8744 = 1) 483
9208 - Send telegram, free PDO mapping (p8744 = 2) 484
9210 - Send telegram, Predefined Connection Set (p8744 = 1) 485
9220 - CANopen control word interconnection 486
9226 - Status word, CANopen (r8784) 487
$\stackrel{\stackrel{+}{\sim}}{\sim}$

Signal targets for control word CANopen（r8795）				
Signal	Meaning	$\begin{gathered} \text { Interconnection } \\ \text { parameters } \end{gathered}$	［Function diagram］ internal control word	［Function diagram］ signal target
STW． 0	$\boldsymbol{S}=$ ON（pulses can be enabled） $0=$ OFF1（braking with RFG，then pulse suppression and ready for switching on）	p0840［0］$=$ r2090．0	［2501．3］	Sequence control
STW． 1	1 ＝No coast－down activated（enable possible） $0=$ Activate coast－down（immediate pulse suppression and switching on inhibited）	p0844［0］＝r2090．1	［2501．3］	Sequence control
STW． 2	1 ＝No Quick stop activated（enable possible） $0=$ Activate Quick stop（OFF3 ramp p1135，then pulse suppression and switching on inhibited）	p0848［0］＝r2090．2	［2501．3］	Sequence control
STW． 3	$\begin{aligned} & 1=\text { Enable operation (pulses can be enabled) } \\ & 0=\text { Inhibit operation (suppress pulses) } \end{aligned}$	p0852［0］＝r2090．3	［2501．3］	Sequence control
STW． 4	1 ＝Enable ramp－function generator $0=$ Inhibit ramp－function generator	$\mathrm{p} 1140[0]=\mathrm{r} 2090.4{ }^{<2>}$	［2501．3］	［3070］
STW． 5	$1=$ Continue ramp－function generator $0=$ function generator	$\mathrm{p} 1141[0]=\mathrm{r} 2090.5^{<2>}$	［2501．3］	［3070］
STW． 6	$\begin{aligned} & 1=\text { Enable setpoint } \\ & 0=\text { Inhibit setpoint (set the ramp-function generator input to zero) } \end{aligned}$	$\mathrm{p} 1142[0]=\mathrm{r} 2090.6^{<2>}$	［2501．3］	［3070］
STW． 7	$\boldsymbol{\Sigma}$＝Acknowledge fault	$\mathrm{p} 2103[0]=\mathrm{r} 2090.7$	［2546．1］	［8060］
STW． 8	1 ＝Stop	$\begin{aligned} & <2> \\ & <3> \end{aligned}$	－	［3070］
STW． 9	Reserved	－	－	－
STW． 10	Reserved	－	－	－
STW． 11	Can be freely connected	$p x x x x[y]=r 2090.11$	－	－
STW． 12	Can be freely connected	$p x x x x[y]=r 2090.12$	－	－
STW． 13	Can be freely connected	$p \mathrm{pxxx}[\mathrm{y}]=\mathrm{r} 2090.13$	－	－
STW． 14	Can be freely connected	$p x x x x[y]=r 2090.14$	－	－
STW． 15	Can be freely connected	$p x x x x[y]=r 2090.15$	－	－

＜1＞Depending on the position of the CANopen control word in p8750，the number of the binector to be connected changes．
$\begin{array}{ll}\text {＜1＞} & \text { Depending on the position of the CANopen control word in p8750，the number } \\ \text {＜2＞} & \text { Not taken into account for the automatic control word interconnection（p8790）．}\end{array}$
$\begin{array}{ll}\text {＜2＞} & \text { Not taken into account for the } \\ \text {＜3＞} & \text { Interconnection via p8791．}\end{array}$

1	2	3	4	5	6	7	8
CANopen					fp＿9220＿97＿68．vsd	Function diagram	－ 9220 －
CANopen control word interconnection					05．09．2017 V4．7．9	SINAMICS G120C	

3.7 Communication fieldbus interface (USS, Modbus)

Function diagrams

9310 - Configuration, addresses and diagnostics 489

9342 - STW1 control word interconnection 490
9352 - ZSW1 status word interconnection 491
9360 - Receive telegram, free interconnection via BICO (p0922 = 999) 492
9370 - Send telegram, free interconnection via BICO $($ p0922 = 999) 493

Signal targets for fieldbus STW1					
Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted
STW1.0	$\Sigma=$ ON (pulses can be enabled) $0=$ OFF1 (braking with ramp-function generator, then pulse suppression \& ready for switching on)	p0840[0] = r2090.0	[2501.3]	Sequence control	-
STW1.1	$1=$ No OFF2 (enable is possible) $0=$ OFF2 (immediate pulse suppression and switching on inhibited)	p0844[0] = r2090.1	[2501.3]	Sequence control	-
STW1.2		p0848[0] $=$ r2090. 2	[2501.3]	Sequence control	-
STW1.3	1 = Enable operation (pulses can be enabled) $0=$ Inhibit operation (suppress pulses)	p0852[0] = 20090.3	[2501.3]	Sequence control	-
STW1.4	1 = Ramp-function generator enable $0=$ Inhibit ramp-function generator (set the ramp-function generator output to zero)	p1140[0] $=$ r2090.4	[2501.3]	[3070]	-
STW1.5	1 = Continue ramp-function generator $0=$ Freezes the ramp-function generator	p1141[0] = r2090.5	[2501.3]	[3070]	-
STW1.6	$\begin{aligned} & 1=\text { Setpoint enable } \\ & 0=\text { Inhibits the setpoint (the ramp-function generator input is set to zero) } \end{aligned}$	p1142[0] $=$ r2090.6	[2501.3]	[3070]	-
STW1.7	$5=$ Acknowledge faults	$\mathrm{p} 2103[0]=\mathrm{r} 2090.7$	[2546.1]	[8060]	-
STW1.8	Reserved	-	-	-	-
STW1.9	Reserved	-	-	-	-
STW1.10	1 = Control via PLC <1>	p0854[0] $=$ r2090.10	[2501.3]	[2501]	-
STW1.11	$1=$ Dir of rot reversal <2>	p1113[0] $=2090.11$	[2505.3]	[3040]	-
STW1.12	Reserved	-	-	-	-
STW1.13	1 = Motorized potentiometer, setpoint, raise	$\mathrm{p} 1035[0]=\mathrm{r} 2090.13$	[2505.3]	[3020]	-
STW1.14	1 = Motorized potentiometer, setpoint, lower	$\mathrm{p} 1036[0]=\mathrm{r} 2090.14$	[2505.3]	[3020]	-
STW1.15	Reserved	-	-	-	-

<1> Bit 10 in STW1 must be set to ensure that the drive accepts the process data.
<2> The direction reversal can be locked (see p1110 and p1111).

1 \| 2	3	4	5	6	7	8
Fieldbus Interface (USS, Modbus)				fp_9342_97_62.vsd	Function diagram	- 9342 -
STW1 control word interconnection				05.09.2017 V4.7.9	G120C USS/Modbus	

$\begin{aligned} & \omega \\ & \underset{\sim}{\omega} \\ & \hline \end{aligned}$	Signal sources for fieldbus ZSW1					
	Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted $<1>$
	zSW1.0	1 = Ready for switching on	p2080[0] $=$ r0899.0	[2503.7]	Sequence control	-
	zSW1.1	1 = Ready for operation (DC link loaded, pulses inhibited)	p2080[1] $=$ r0899.1	[2503.7]	Sequence control	-
	zSW1.2	1 = Operation enabled (drive follows n _set)	p2080[2] $=$ r0899.2	[2503.7]	Sequence control	-
	zSW1.3	1 = Fault present	$\mathrm{p} 2080[3]=\mathrm{r} 2139.3$	[2548.7]	[8060]	-
	zSW1.4	1 = No coast down active (OFF2 inactive)	$\mathrm{p} 2080[4]=\mathrm{r} 0899.4$	[2503.7]	Sequence control	-
	ZSW1.5	1 = No Quick stop active (OFF3 inactive)	p2080[5] $=$ r0899.5	[2503.7]	Sequence control	-
	zSW1.6	1 = Switching on inhibited active	p2080[6] $=$ r0899.6	[2503.7]	Sequence control	-
	ZSW1.7	1 = Alarm present	$\mathrm{p} 2080[7]=\mathrm{r} 2139.7$	[2548.7]	[8065]	-
	zSW1.8	1 = Speed setpoint - actual value deviation within tolerance t_off	p2080[8] $=$ r2197.7	[2534.7]	[8011]	-
	ZSW1.9	1 = Control requested <2>	p2080[9] $=$ r0899.9	[2503.7]	[2503]	-
	ZSW1.10	$1=\mathrm{f}$ or n comparison value reached/exceeded	p2080[10] = r2199.1	[2536.7]	[8010]	-
	ZSW1.11	$1=1, M$, or P limit not reached	p2080[11] = r1407.7	[2522.7]	[6060]	\checkmark
	ZSW1.12	1 = Open holding brake	p2080[12] $=$ r0899.12	[2503.7]	[2701]	-
	ZSW1.13	1 = No motor overtemperature alarm	p2080[13] $=$ r2135.14	[2548.7]	[8016]	\checkmark
	ZSW1.14	1 = Motor rotates forwards ($n _$act ≥ 0)	p2080[14] $=$ r2197.3	[2534.7]	[8011]	-
	ZSW1.15	1 = No alarm, thermal overload, power unit	p2080[15] $=$ r2135.15	[2548.7]	[8021]	\checkmark

<1> The ZSW1 is generated using the binector-connector converter (BI: p2080[0...15], inversion: p2088[0].0...p2088[0].15).
<2> The drive is ready to accept data.

<1> The send word 1 must be used as status word (ZSW1).
<2> The preconfiguration with the speed setpoint is set automatically via p1000 $=6$.
<3> Physical word values are inserted in the telegram as referenced variables. p200x apply as reference variables (telegram contents $=4000$ hex if the input variable has the value p200x).
The following applies for temperature values: $100^{\circ} \mathrm{C}->100 \%=4000$

1	2	3	4	5	6		7	8
Fieldbus Interface (USS, Modbus)					fp_9370_97	2.vsd	Function diagram	9370 -
Send telegram, free interconnection via BICO (p0922 = 999)					05.09.2017	V4.7.9	G120C USS/Modb	

3.8 Internal control/status words

Function diagrams

2501 - Control word, sequence control (r0898) 495
2503 - Status word, sequence control (r0899) 496
2505 - Control word, setpoint channel (r1198) 497
2510 - Status word 1 (r0052) 498
2512 - Control word 1 (r0054) 499
2513 - Supplementary control word (r0055) 500
2522 - Status word, speed controller (r1407) 501
2526 - Status word, closed-loop control (r0056) 502
2530 - Status word, current control (r1408) 503
2534 - Status word, monitoring functions 1 (r2197) 504
2536 - Status word, monitoring functions 2 (r2198) 505
2537 - Status word, monitoring functions 3 (r2199) 506
2546 - Control word, faults/alarms (r2138) 507
2548 - Status word, faults/alarms 1 and 2 (r2139 and r2135) 508
2610 - Sequence control - Sequencer 509
2634 - Sequence control - missing enable signals, line contactor control 510

<1> The drive is ready to accept data.

1	2	3	4	5	6		7	8
Internal control/status words					fp_2503_97_05.vsd		Function diagram	
Status word, sequence control (r0899)					05.09.2017	V4.7.9	SINAMICS G120C ${ }^{\text {- }} \mathbf{2 5 0 3}$ -	

<2> Only for Power Modules PM230/PM240

1	2	3	4	5	6		7	8
Internal control/status words					fp_2526_97	66.vsd	Function diagram	- 2526 -
Status word, closed-loop control (r0056)					05.09.2017 V4.7.9		SINAMICS G120C	

From

$3.9 \quad$ Brake control

Function diagrams

2701 - Basic brake control512
<1> Priority assignment (high -> low): p1215, p0858, p0855, p0856, sequence control.
<2> If p1215 = 0, 2->t $=0 \mathrm{~ms}$
<3> Only if "Safety Integrated" is active
<4> Monitoring time is initialized in dependence on the rated power of Power Module.
<5> If an external motor holding brake is used, p1215 should be set to 3 and r0899.12 should be interconnected as control signal.
<6> r0046.21 $=0$, as long as r0046.0 $=1$ (OFF1 enable missing or switching on inhibited)
r0046.21 $=1$, if p $0858=1$ or $00856=0$.
<7> The internal signal includes signals that lead to OFF1 or OFF3 (e. g. BICO or fault response)
<8> If the brake is permanently applied or released (p0855, p0858 or p1215) the drive does not wait while the brake is released or applied
<9> Start frequency with U/f control: p1351, p1352 [6310.6]; Start torque with vector control: p1475 [6040.3].

3.10 Safety Integrated Basic functions

Function diagrams
2800 - Parameter manager 514
2802 - Monitoring functions and faults/alarms 515
2804 - Status words 516
2810 - STO (Safe Torque Off) 517
2813 - F-DI (Fail-safe Digital Input) 518

3.11 Safety Integrated PROFIsafe

Function diagrams

2915 - Standard telegrams520

1	2	3	4	5	6		7	8
Safety Integrated PROFIsafe					fp_2915_97_63.vsd		Function diagram	- 2915 -
Standard telegrams					05.09.2017	V4.7.9	G120C DP/ PN	

3.12 Setpoint channel

Function diagrams

3001 - Overview 522
3010 - Fixed speed setpoints, binary selection (p1016 = 2) 523
3011 - Fixed speed setpoints, direct selection (p1016 = 1) 524
3020 - Motorized potentiometer 525
3030 - Main/supplementary setpoint, setpoint scaling, jogging 526
3040 - Direction limitation and direction reversal 527
3050 - Skip frequency bands and speed limitations 528
3070 - Extended ramp-function generator 529

1	2	3	4	5	6		7	8
Setpoint channel					fp_3010_97	05.vsd	Function diagram	- 3010 -
Fixed speed setpoints, binary selection (p1016 = 2)					05.09.2017	V4.7.9	SINAMICS G120C	

$3.13 \quad$ Vector control / U/f control

Function diagrams

6019 - Application classes (p0096), overview 531
6020 - Speed control and generation of the torque limits, overview 532
6030 - Speed setpoint, acceleration model 533
6035 - Moment of inertia estimator 534
6040 - Speed controller with Kp_n-/Tn_n adaptation 535
6060 - Torque setpoint 536
6220 - Vdc_max controller and Vdc_min controller 537
6300 - U/f control, overview 538
6301 - U/f control, characteristic and voltage boost 539
6310 - U/f control, resonance damping and slip compensation 540
6320 - U/f control, Vdc_max controller 541
6490 - Speed control configuration 542
6491 - Flux control configuration 543
6630 - Upper/lower torque limit 544
6640 - Current/power/torque limits 545
6700 - Current control, overview 546
6710 - Current setpoint filter 547
6714 - Iq and Id controllers 548
6721 - Id setpoint (PMSM, p0300 = 2) 549
6722 - Field weakening characteristic, flux setpoint (ASM, p0300 $=1$) 550
6723 - Field weakening controller, flux controller, Id setpoint (ASM, p0300 = 1) 551
6724 - Field weakening controller (PMSM, p0300 = 2) 552
6730 - Interface to the Power Module (ASM, p0300 = 1) 553
6731 - Interface to the Power Module (PMSM, p0300 = 2) 554
6799 - Display signals 555

	Possible application classes (p0096)	
	For induction motor $(\mathbf{p 0 3 0 0}=\mathbf{1 x x})$	For synchronous motor $(\mathbf{p 0 3 0 0}=\mathbf{2 x x})$

1	2	3	4	5	6		7	8
Vector control / U/f control					fp_6019_97	05.vsd	Function diagram	- 6019 -
Application classes (p0096), overview					05.09.2017	V4.7.9	SINAMICS G120C	

<1> For p1472 $=0.0$ s or 100.0 s , the I component is inhibited (integral action time $=$ infinite).

1	2	3	4	5	6		7	8
Vector control / U/f control					fp_6040_97	05.vsd	Function diagram	- 6040-
Speed controller with Kp_n/Tn_n adaptation					05.09.2017	V4.7.9	SINAMICS G120C	

Speed limiting

<1> Intervention by the Vdc controller.
<2> Intervention when the speed limit is exceeded + 2 \% n rated

<1> Value range and/or factory setting depend on p0500.
1
1

3.14 U/f control, Standard Drive Control (p0096 = 1)

Function diagrams

6850 - U/f control, overview (p0096 = 1) 557
6851 - U/f control, characteristic and voltage boost (p0096 = 1) 558
6853 - U/f control, resonance damping and slip compensation (p0096 = 1) 559
6854 - U/f control, Vdc_max controller (p0096 = 1) 560
6856 - U/f control, interface to the Power Module (ASM, p0300 = 1, p0096 = 1) 561

<1> If p1349 = 0 : the limit is $0.95 \times f$ Mot $\mathrm{N} \leq 45 \mathrm{~Hz}$.
<2> Activation with r0056.4 $=1$ till r0066 $\geq \mathrm{p} 1334$ and p1216 has expired.

1	2	3	4	5	6		7	8
U/f control, Standard Drive Control					fp_6853_97	05.vsd	Function diagram	- 6853 -
U/f control, Resonance damping and slip compensation, (p0096 = 1)					05.09.2017	V4.7.9	SINAMICS G120C	

[^3]
3.15 Vector control, Dynamic Drive Control (p0096 = 2)

Function diagrams

6820 - Speed control and generation of the torque limits, overview (p0096 = 2) 563
6821 - Current control, overview (p0096 = 2) 564
6822 - Speed setpoint, precontrol balancing, acceleration model (p0096 = 2) 565
6823 - Moment of inertia estimator (p0096 = 2) 566
6824 - Speed controller with Kp_n/Tn_n adaptation (p0096 = 2) 567
6826 - Torque setpoint (p0096 = 2) 568
6827 - Vdc_max controller and Vdc_min controller (p0096 = 2) 569
6828 - Current/power/torque limits $(p 0096=2)$ 570
6832 - Current setpoint filter (p0096 = 2) 571
6833 - Iq and Id controllers (p0096 = 2) 572
6836 - Id setpoint (PMSM, p0300 $=2 x x$, p0096 $=2$) 573
6837 - Field weakening characteristic, flux setpoint (ASM, p0300 = 1, p0096 = 2) 574
6838 - Field weakening controller, flux controller, Id setpoint (ASM, p0300 = 1, p0096 = 2) 575
6839 - Field weakening controller (PMSM, p0300 $=2 x x$, p0096 $=2$) 576
6841 - Interface to the Power Module (ASM, p0300 = 1, p0096 = 2) 577
6842 - Interface to the Power Module (PMSM, p0300 = 2xx, p0096 = 2) 578

＜1＞Possible bit combinations p5310：
Bit 1,0
$=0,0$－－＞Function not active
$=0,1$－－＞Cyclic calculation of the coefficients without moment of inertia precontrol（commissioning）
$=1,0 \rightarrow$ Moment of inertia precontrol activated（without cyclic calculation of the coefficients）．
$-1,1-->$ Moment of inertia precontrol activated（with cyclic calculation of the coefficients）．
＜2＞p1564，p5314 and p5315 for negative direction of rotation．

<1> For p1472 $=0.0$ s or 100.0 s , the I component is inhibited (integral action time $=$ infinite),

1	2	3	4	5	6		7	8
Vector control, Dynamic Drive Control					fp_6824_97	05.vsd	Function diagram	-6824 -
Speed controller with Kp_n/Tn_n adaptation (p0096 = 2)					05.09.2017	V4.7.9	SINAMICS G120C	

1	2	3	4	5	6		7	8
Vector control, Dynamic Drive Control					fp_6832_97	05.vsd	Function diagram	-6832-
Current setpoint filter (p0096 = 2)					05.09.2017	V4.7.9	SINAMICS G120C	

つOZレ૭ SכIN甘NIS

1	2	3	4	5	6		7	8
Vector control, Dynamic Drive Control					fp_6836_97	05.vsd	Function diagram	6836 -
Id setpoint (PMSM, p0300 = 2xx, p0096 = 2)					05.09.2017	V4.7.9	SINAMICS G120C	

<1> Value range and/or factory setting depend on Power Module.
ASM: Asynchronmotor (induction motor)

1	2	3	4	5	6		7	8
Vector control, Dynamic Drive Control					fp_6837_97	05.vsd	Function diagram	-6837-
Field weakening characteristic, flux setpoint (ASM, p0300 = 1, p0096 = 2)					05.09.2017 V4.7.9		SINAMICS G120C	

1	2	3	4	5	6		7	8
Vector control, Dynamic Drive Control					fp_6838_97	05.vsd	Function diagram	- 6838 -
Field weakening controller, flux controller, Id setpoint (ASM, p0300 = 1, p0096 = 2)					05.09.2017	V4.7.9	SINAMICS G120C	

3.16 Technology functions

Function diagrams

7010 - Friction characteristic 580
7017 - DC braking (ASM, p0300 = 1) 581

$3.17 \quad$ Free function blocks

Function diagrams

7200 - Sampling times of the runtime groups 583
7210 - AND 0 ... 3 584
7212 - OR 0 ... 3 585
7214 - XOR 0 ... 3 586
7216 - NOT 0 ... 5 587
7220 - ADD 0 ... 2, SUB 0 ... 1 588
7222 - MUL 0 ... 1, DIV 0 ... 1 589
7224 - AVA 0 ... 1 590
7225 - NCM 0 ... 1 591
7226 - PLI 0 ... 1 592
7230 - MFP 0 ... 3, PCL 0 ... 1 593
7232 - PDE 0 ... 3 594
7233 - PDF 0 ... 3 595
7234 - PST 0 ... 1 596
7240 - RSR 0 ... 2, DFR 0 ... 2 597
7250 - BSW 0 ... 1, NSW 0 ... 1 598
7260 - LIM 0 ... 1 599
7262 - PT1 0 ... 1 600
7264 - INT 0, DIF 0 601
7270 - LVM 0 ... 1 602

1	2	3	4	5	6	7	8
Free Function Blocks					fp_7200_97_61.vsd	Function diagram	- 7200 -
Sampling times of the runtime groups					05.09.2017 V4.7.9	SINAMICS G120C	

PDE (ON delay)

PDE 0

PDE 1

 r20165

PDF (OFF delay)

PDF 1

PDF 2

PDF 2 RTG	PDF 2 t ext ms
$5 \ldots 999$	$0.00 \ldots 5400000.00$

PDF 2 inp_pulse p20344

PDF 3

1	2	3	4	5	6		7	8
Free function blocks - Time function blocks					fp_7233_97	61.vsd	Function diagram	- 7233 -
PDF $0 . . .3$					05.09.2017 V4.7.9		SINAMICS G120C	

1	2	3	4	5	6		7	8
Free function blocks - Control function blocks					fp_7260_97	61.vsd	Function diagram	- 7260-
LIM $0 . . .1$					05.09.2017 V4.7.9		SINAMICS G120C	

3.18 Technology controller

Function diagrams

7950 - Fixed value, binary selection (p2216 = 2) 604
7951 - Fixed value, direct selection (p2216 = 1) 605
7954 - Motorized potentiometer 606
7958 - Closed-loop control 607

3.19 Signals and monitoring functions

Function diagrams

8005 - Overview 609
8010 - Speed signals 1 610
8011 - Speed signals 2 611
8012 - Torque signals, motor blocked/stalled 612
8016 - Thermal monitoring motor, motor temperature status word faults/alarms 613
8017 - Motor temperature model 1 (I2t) 614
8018 - Motor temperature model 2 615
8019 - Motor temperature model 3 616
8021 - Thermal monitoring, power unit 617
8022 - Monitoring functions 1 618
8023 - Monitoring functions 2 619

ZSW monitor 1 r2197 r2197.6 [2534.3] $\mid n _$act $\mid>n _m a x$
ZSW monitor 3 2SW monito $\underset{r}{\text { r2199 }}{ }_{\text {r2199.1 }}{ }_{\text {[2537.3] }}$ for n comparison value
reached or exceeded
<1> Calculated.

1	2	3	4	5	6		7	8
Signals and monitoring functions					fp_8010_97	05.vsd	Function diagram	- 8010 -
Speed signals 1					05.09.2017	V4.7.9	SINAMICS G120C	

<1> Calculated.

1	2	3	4	5	6		7	8
Signals and monitoring functions					fp_8012_97	05.vsd	Function diagram	-8012-
Torque signals, motor blocked/stalled					05.09.2017	V4.7.9	SINAMICS G120C	

<1> Motor temperature model 1/3: A07012
Motor temperature model 2: A07910
<2> Only for p0610 = 1 .
<3> Only applies for p0601 $=0,2,6$
<4> The relevant rated response temperature in ${ }^{\circ} \mathrm{C}$ depends on the temperature sensor chosen by <5> the motor manufacturer.

For KTY/PT1000 and PTC / bimetallic NC contact, the value p0606 $=0$ has a different meaning: KTY/PT1000: 0 means the output of the timer is switched out (logical 0).
PTC / bimetallic NC contact: 0 means the delay time is 0 s .
< Switch-on delay p0607 $=0$ suppresses fault F07016.

1	2	3	4	5	6		7	8
Signals and monitoring functions					fp_8016_97	05.vsd	Function diagram	- 8016 -
Thermal monitoring motor, motor temperature status word faults/alarms					05.09.2017	V4.7.9	SINAMICS G120C	

Mot temp [${ }^{\circ} \mathrm{C}$]
$\xrightarrow{r 0035}$ [8017.1]

Thermal monitoring motor

<1> Only if there is a temperature sensor ($\mathrm{p} 0601>0$).
<2> Only if <1> are not met.
<3> Only if p0612.8 = 1
<4> p0605 also defines the target temperature for p0034 $=100 \%$. Therefore, p0605 has no influence on the time up to alarm A07012
$<5>$ If p0610 = 12

1	2	3	4	5	6		7	8
Signals and monitoring functions					fp_8017_97	05.vsd	Function diagram	- 8017 -
Motor temperature model 1 (I2t)					05.09.2017	V4.7.9	SINAMICS G120C	

<1> If p $0610=12$.

| 1 \|l| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signals and monitoring functions | | | | fp_8018_97_61.vsd | Function diagram | - 8018 - |
| Motor temperature model 2 | | | | 05.09.2017 V4.7.9 | SINAMICS G120C | |

<1> If p0610=12.

| 1 \|l|l | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signals and monitoring functions | | | | fp_8019_97_05.vsd | Function diagram | - 8019 - |
| Motor temperature model 3 | | | | 05.09.2017 V4.7.9 | SINAMICS G120C | |

3.20 Diagnostics

Function diagrams

8050 - Overview 621
8060 - Fault buffer 622
8065 - Alarm buffer 623
8070 - Faults/alarms trigger word (r2129) 624
8075 - Faults/alarms configuration 625

[8075] Faults/alarms configuration

1	2	3	4	5	6		7	8
Diagnostics					fp_8050_97_05.vsd		Function diagram	-8050-
Overview					05.09.2017	V4.7.9	SINAMICS G120C	

[^4]
Changing the fault response for maximum 20 faults <1>

Changing the acknowledge mode for maximum 20 faults <1>

<1> The fault response, acknowledge mode and message type for all faults and alarms are set to meaningful default values in the factory setting
When the message type is changed, the supplementary information is tranferred from fault value r0949 to alarm value r2124 and vice versa

1	2	3	4	5	6		7	8
Diagnostics					fp_8075_97	05.vsd	Function diagram	- 8075-
Faults/alarms configuration					05.09.2017	V4.7.9	SINAMICS G120C	

3.21 Data sets

Function diagrams

8560 - Command Data Sets (CDS) 627
8565 - Drive Data Sets (DDS) 628

628

.
<2> Data sets can only be applied and cleared when p0010 $=15$ is set.

1	2	3	4	5	6		7	8
Data sets					fp_8565_97	05.vsd	Function diagram	-8565-
Drive Data Sets (DDS)					05.09.2017	V4.7.9	SINAMICS G120C	

Faults and alarms

Content

4.1 Overview of faults and alarms 630
4.2 List of faults and alarms 641

4.1 Overview of faults and alarms

4.1.1 General

Display of faults/alarms (messages)

In the case of a fault, the drive signals the corresponding fault(s) and/or alarm(s).
For example, the following methods for displaying faults and alarms are available:

- Display via the fault and alarm buffer with PROFIBUS/PROFINET
- Display online via the commissioning software
- Display and operating unit (e.g. BOP, AOP)

Differences between faults and alarms

The differences between faults and alarms are as follows:
Table 4-1 Differences between faults and alarms

Type	\quadDescription Faults Alarms - The appropriate fault response is triggered. - Status signal ZSW1.3 is set. - The fault is entered in the fault buffer. - Acknowe the original cause of the fault.
What happens when an alarm occurs? - Status signal ZSW1.7 is set. - The alarm is entered into the alarm buffer.	
How are alarms eliminated? - Alarms acknowledge themselves. If the cause of the alarm is no longer present, they automatically reset themselves.	

Fault reactions

The following fault reactions are defined:
Table 4-2 Fault reactions

| List | PROFIdrive | Reaction | Description |
| :--- | :--- | :--- | :--- |$|$| NONE | - |
| :--- | :--- |
| | None
 ON/
 OFF
 OFF1
 Note
 With "Basic positioner" (r0108.4 = 1), the following applies:
 When a fault occurs with fault reaction "NONE", an active traversing
 task is interrupted and the system switches to tracking mode until the
 fault has been rectified and acknowledged. |
| | |

Table 4-2 Fault reactions, continued

List	PROFIdrive	Reaction	Description
OFF3	QUICK STOP	Brake along the OFF3 down ramp followed by pulse disable	Closed loop speed control (p1300 = 20, 21) - n _set $=0$ is input immediately to brake the drive along the OFF3 ramp down (p1135). - When zero speed is detected, the motor holding brake (if parameterized) is closed. The pulses are suppressed when the holding brake's closing time (p 1217) expires. Zero speed is detected if the actual speed drops below the threshold in p1226 or if the monitoring time (p 1227) started when speed setpoint <= speed threshold (p1226) has expired. - Switching-on inhibited is activated. Torque control (p1300 = 22, 23) - Changeover to speed-controlled operation and other reactions as described for speed-controlled operation.
STOP2	-	n _set $=0$	- n _set $=0$ is input immediately to brake the drive along the OFF3 ramp down (p1135). - The drive remains in closed-loop speed control.
IASC/ DCBRAKE	-	-	- For synchronous motors, the following applies: If a fault occurs with this fault reaction, an internal armature shortcircuit is triggered. The conditions for p1231 = 4 must be observed. - For induction motors, the following applies: If a fault occurs with this fault reaction, DC braking is triggered. DC braking must have been commissioned (p1230 to p1239).

Acknowledging faults

The list of faults and alarms specifies how to acknowledge each fault after the cause has been eliminated.

Table 4-3 Acknowledging faults

Acknowledgment	Description
POWER ON	The fault is acknowledged by a POWER ON (switch drive unit off and on again). Note If this action has not removed the fault cause, the fault is displayed again immediately after power up.
IMMEDIATELY	Faults can be acknowledged on one drive object (Points 1 to 3) or on all drive objects (Point 4) as follows: 1 Set acknowledgment by parameter: $\text { p3981 = } 0 \text {--> } 1$ 2 Acknowledging via binector inputs: p2103 BI: 1. Acknowledge faults p2104 BI: 2. Acknowledge faults p2105 BI: 3. Acknowledge faults 3 Acknowledging via a PROFIdrive control signal: STW1.7 = 0 --> 1 (edge) Note - These faults can also be acknowledged by a POWER ON operation. - If this action has not eliminated the fault cause, the fault will continue to be displayed after acknowledgment. - Safety Integrated faults The "Safe Torque Off" (STO) function must be deselected before these faults are acknowledged.
PULSE SUPPRESSION	The fault can only be acknowledged when the pulses are inhibited (r0899.11 = 0). The same options are available for acknowledging as described under IMMEDIATE acknowledgment.

4.1.2 Explanation of the list of faults and alarms

The data in the following example have been chosen at random. The information listed below is the maximum amount of information that a description can contain. Some of the information is optional.

The "List of faults and alarms (Page 641)" has the following layout:

```
Start of example
```

Axxxxx (F, N) Fault location (optional): Name
Message class: Text of the message class (number according to PROFIdrive)
Reaction: NONE
Acknowledgement: NONE
Cause: Description of possible causes.
Fault value (r0949, interpret format): or alarm value (r2124, interpret format): (optional)
Information about fault or alarm values (optional).
Remedy: Description of possible remedies.
End of example

Axxxxx	Alarm xxxxx
Axxxxx (F, N)	Alarm xxxxx (message type can be changed to F or N) Fxxxxx Fxxxxx (A, N)
Fault xxxxx	Fault xxxxx (report type can be changed to A or N)
Nxxxxx	No message
Nxxxxx (A)	No message (message type can be changed to A)
Cxxxxx	Safety message (separate message buffer)

A message comprises a letter followed by the relevant number.
The meaning of the letters is as follows:

- A means "Alarm"
- F means "Fault"
- N means "No message" or "Internal message"
- C means "Safety message"

The optional brackets indicate whether the type specified for this message can be changed and which message types can be adjusted via parameters (p2118, p2119).

Information on reaction and acknowledgment is specified independently for a message with an adjustable message type (e.g. reaction to F, acknowledgment for F).

Note

You can change the default properties of a fault or alarm by setting parameters.
References: SINAMICS G120 Operating Instructions
SINAMICS G120C Frequency Converter,
Section "Alarms, faults, and system messages"
The "List of faults and alarms (Page 641)" supplies information referred to the properties of a message set as default. If the properties of a specific message are changed, the corresponding information may have to be modified in this list.

Fault location (optional): Name

The fault location (optional), the name of the fault or alarm and the message number are all used to identify the message (e.g. with the commissioning software).

Message class:

For each message, specifies the associated message class with the following structure:
Text of the message class (number according to PROFIdrive)
The message classes are transferred at different interfaces to higher-level control systems and their associated display and operating units.

The message classes that are available are shown in Table "Message classes and coding of various diagnostic interfaces (Page 636)". In addition to the text of the message class and their number according to PROFIdrive - as well as a brief help text regarding the cause and remedy - they also include information about the various diagnostic interfaces:

- PN (hex)

Specifies the "Channel error type" of the PROFINET channel diagnostics.
When activating the channel diagnostics, using the GSDML file, the texts listed in the table can be displayed.

- DS1 (dec)

Specifies the bit number in date set DS1 of the diagnostic alarm for SIMATIC S7.
When the diagnostic alarms are activated, the texts listed in the table can be displayed.

- DP (dec)

Specifies the "Error type" of the channel-related diagnostics for PROFIBUS.
When the channel diagnostics are activated, the texts listed in the standard and the GSD file can be displayed.

- ET 200 (dec)

Specifies the "Error type" of the channel-related diagnostics for the SIMATIC ET 200pro FC-2 device.

When the channel diagnostics are activated, the texts listed in the standard and the GSD file of the ET 200pro can be displayed.

- NAMUR (r3113.x)

Specifies the bit number in parameter r3113.
For the interfaces DP, ET 200, NAMUR, in some instances, the message classes are combined.

Table 4-4 Message classes and coding of various diagnostic interfaces

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	$\begin{aligned} & \text { PN } \\ & \text { (hex) } \end{aligned}$	$\begin{gathered} \text { DS1 } \\ \text { (dec) } \end{gathered}$	$\begin{gathered} \text { DP } \\ \text { (dec) } \end{gathered}$	ET 200 (dec)	NAMUR (r3113.x)
Hardware/software errors (1) A hardware or software malfunction was detected. Carry out a POWER ON for the relevant component. If it occurs again, contact the hotline.	9000	0	16	9	0
Line fault (2) A line supply fault has occurred (phase failure, voltage level ...). Check the line supply and fuses. Check the supply voltage. Check the wiring.	9001	1	17	24	1
Supply voltage fault (3) An electronics supply voltage fault ($48 \mathrm{~V}, 24 \mathrm{~V}, 5 \mathrm{~V} . .$.) was detected. Check the wiring. Check the voltage level.	9002	2	$\begin{aligned} & 2^{1} \\ & 3^{2} \end{aligned}$	$\begin{aligned} & 2^{1} \\ & 3^{2} \end{aligned}$	15
DC-link overvoltage (4) The DC-link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply, reactor, voltages). Check the infeed settings.	9003	3	18	24	2
Power electronics fault (5) An impermissible operating state of the power electronics was detected (overcurrent, overtemperature, IGBT failure ...). Check compliance with the permissible load cycles. Check the ambient temperatures (fan).	9004	4	19	24	3
Overtemperature of the electronic component (6) The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature / control cabinet ventilation.	9005	5	20	5	4
Ground fault / inter-phase short-circuit detected (7) A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the power cables (connection). Check the motor.	9006	6	21	20	5
Motor overload (8) The motor was operated outside the permissible limits (temperature, current, torque ...). Check the load cycles and set limits. Check the ambient temperature / motor cooling.	9007	7	22	24	6
Communication to the higher-level controller faulted (9) The communication to the higher-level controller (internal coupling, PROFIBUS, PROFINET ...) is faulted or interrupted. Check the state of the higher-level controller. Check the communication connection/-wiring. Check the bus configuration/cycles.	9008	8	23	19	7
Safety monitoring channel has detected an error (10) A safe operation monitoring function has detected an error.	9009	9	24	25	8
Actual position/speed value incorrect or not available (11) An illegal signal state was detected while evaluating the encoder signals (track signals, zero marks, absolute values ...). Check the encoder / state of the encoder signals. Observe the maximum permissible frequencies.	900A	10	25	29	9

Table 4-4 Message classes and coding of various diagnostic interfaces, continued

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	$\begin{aligned} & \text { PN } \\ & \text { (hex) } \end{aligned}$	$\begin{gathered} \text { DS1 } \\ \text { (dec) } \end{gathered}$	$\begin{gathered} \text { DP } \\ \text { (dec) } \end{gathered}$	$\begin{gathered} \text { ET } 200 \\ \text { (dec) } \end{gathered}$	NAMUR (r3113.x)
Internal (DRIVE-CLiQ) communication faulted (12) The internal communication between the SINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ wiring. Ensure an EMCcompliant installation. Observe the maximum permissible quantity structures / cycles.	900B	11	26	31	10
Infeed fault (13) The infeed is faulty or has failed. Check the infeed and its environment (line supply, filters, reactors, fuses ...). Check the infeed control.	900C	12	27	24	11
Braking controller / Braking Module faulted (14) The internal or external Braking Module is faulted or overloaded (temperature). Check the connection/state of the Braking Module. Comply with the permissible number of braking operations and their duration.	900D	13	28	24	15
Line filter fault (15) The line filter monitoring has detected an excessively high temperature or another impermissible state. Check the temperature / temperature monitoring. Check the configuration to ensure that it is permissible (filter type, infeed, thresholds).	900E	14	17	24	15
External measured value / signal state outside of the permissible range (16) A measured value / signal state read in via the input area (digital/analog/temperature) has assumed an impermissible value/state. Identify and check the relevant signal. Check the set thresholds.	900F	15	29	26	15
Application / technological function faulty (17) The application / technological function has exceeded a (set) limit (position, velocity, torque ...). Identify and check the relevant limit. Check the setpoint specification of the higher-level controller.	9010	16	30	9	15
Error in the parameterization/configuration/commissioning procedure (18) An error was identified in the parameterization or in a commissioning procedure, or the parameterization does not match the actual device configuration. Determine the precise cause of the fault using the commissioning tool. Adapt the parameterization or device configuration.	9011	17	31	16	15
General drive fault (19) Group fault. Determine the precise cause of the fault using the commissioning tool.	9012	18	9	9	15
Auxiliary unit fault (20) The monitoring of an auxiliary unit (incoming transformer, cooling unit ...) has detected an illegal state. Determine the exact cause of the fault and check the relevant device.	9013	19	29	26	15

[^5]
Reaction: Default fault reaction (adjustable fault reaction)

Specifies the default reaction in the event of a fault.
The optional parentheses indicate whether the default fault reactions can be changed and which fault reactions can be adjusted via parameters (p2100, p2101).

Note

See Table "Fault reactions (Page 631)"

Acknowledgment: Default acknowledgment (adjustable acknowledgment)

Specifies the default method of acknowledging faults after the cause has been eliminated.
The optional parentheses indicate whether the default acknowledgment can be changed and which acknowledgment can be adjusted via parameters (p2126, p2127).

Note

See Table "Acknowledging faults (Page 633)"

Cause:

Describes the possible causes of the fault or alarm. A fault or alarm value can also be specified (optional).

Fault value (r0949, format):
The fault value is entered in the fault buffer in r0949[0...63] and specifies additional, more precise information about a fault.

Alarm value (r2124, format):
The alarm value specifies additional, more precise information about an alarm.
The alarm value is entered in the alarm buffer in r2124[0...7] and specifies additional, more precise information about an alarm.

Remedy:

Describes the methods available for eliminating the cause of the active fault or alarm.

WARNING

In certain cases, service and maintenance personnel are responsible for choosing a suitable method for eliminating the cause of faults.

4.1.3 \quad Number ranges of faults and alarms

Note

The following number ranges represent an overview of all faults and alarms used in the SINAMICS drive family.

The faults and alarms for the product described in this List Manual are described in detail in "List of faults and alarms (Page 641)".

Faults and alarms are organized into the following number ranges:
Table 4-5 Number ranges of faults and alarms

of	To	Area
1000	3999	Control Unit
4000	4999	Reserved
5000	5999	Power section
6000	6899	Infeed
6900	6999	Braking Module
7000	7999	Drive
8000	8999	Option Board
9000	12999	Reserved
13000	13020	Licensing
13021	13099	Reserved
13100	13102	Know-how protection
13103	19999	Reserved
20000	29999	OEM
30000	30999	DRIVE-CLiQ component power unit
31000	31999	DRIVE-CLiQ component encoder 1
32000	32999	DRIVE-CLiQ component encoder 2 Note Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
33000	33999	DRIVE-CLiQ component encoder 3 Note Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
34000	34999	Voltage Sensing Module (VSM)
35000	35199	Terminal Module 54F (TM54F)
35200	35999	Terminal Module 31 (TM31)
36000	36999	DRIVE-CLiQ Hub Module
37000	37999	HF Damping Module

Table 4-5 Number ranges of faults and alarms, continued

of	To	Area
40000	40999	Controller Extension 32 (CX32)
41000	48999	Reserved
49000	49999	SINAMICS GM/SM/GL
50000	50499	Communication Board (COMM BOARD)
50500	59999	OEM Siemens
60000	65535	SINAMICS DC MASTER (closed-loop DC current control)

4.2 List of faults and alarms

Product: SINAMICS G120C, Version: 4710100, Language: eng
Objects: G120C CAN, G120C DP, G120C PN, G120C USS

F01000	Internal software error
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- evaluate fault buffer (r0945).
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- if required, check the data on the non-volatile memory (e.g. memory card).
	- upgrade firmware to later version.
	- contact Technical Support.
	- replace the Control Unit.

F01001	FloatingPoint exception
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An exception occurred during an operation with the FloatingPoint data type.
	The error may be caused by the basic system or an OA application (e.g. FBLOCKS, DCC).
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
	Note:
	Refer to r9999 for further information about this fault.
	r9999[0]: Fault number.
	r9999[1]: Program counter at the time when the exception occurred.
	r9999[2]: Cause of the FloatingPoint exception.
	Bit $0=1$: Operation invalid
	Bit $1=1$: Division by zero
	Bit 2 = 1: Overflow
	Bit 3 = 1: Underflow
	Bit 4 = 1: Inaccurate result
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check configuration and signals of the blocks in FBLOCKS.
	- check configuration and signals of DCC charts.
	- upgrade firmware to later version.
	- contact Technical Support.
F01002	Internal software error
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

F01003	Acknowledgment delay when accessing the memory
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A memory area was accessed that does not return a "READY".
	Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.

N01004 (F, A)	Internal software error
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An internal software error has occurred.
	Fault value (r0949, hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- read out diagnostics parameter (r9999).
	- contact Technical Support.
F01005	File upload/download error
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The upload or download of EEPROM data was unsuccessful.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: $\mathrm{yy}=$ component number, $\mathrm{xxxx}=$ fault cause
	xxxx $=000 \mathrm{~B}$ hex $=11 \mathrm{dec}$:
	Power unit component has detected a checksum error.
	xxxx $=000 \mathrm{~F}$ hex $=15 \mathrm{dec}$:
	The selected power unit will not accept the content of the EEPROM file.
	xxxx $=0011$ hex = 17 dec :
	Power unit component has detected an internal access error.
	xxxx $=0012$ hex $=18 \mathrm{dec}$:
	After several communication attempts, no response from the power unit component.
	xxxx $=008 \mathrm{~B}$ hex $=140 \mathrm{dec}$:
	EEPROM file for the power unit component not available on the memory card.
	xxxx $=008 \mathrm{D}$ hex $=141 \mathrm{dec}$:
	An inconsistent length of the firmware file was signaled. It is possible that the download/upload has been interrupted. xxxx $=0090$ hex $=144 \mathrm{dec}$:
	When checking the file that was loaded, the component detected a fault (checksum). It is possible that the file on the memory card is defective.
	$x x x x=0092$ hex = 146 dec :
	This SW or HW does not support the selected function.
	xxxx $=009 \mathrm{C}$ hex $=156 \mathrm{dec}$:
	Component with the specified component number is not available (p 7828).
	Only for internal Siemens troubleshooting.
Remedy:	Save a suitable firmware file or EEPROM file for upload or download in folder "/ee_sac/" on the memory card.

A01009 (N)	CU: Control module overtemperature
Message class:	Overtemperature of the electronic components (6)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value.
Remedy:	- check the air intake for the Control Unit. - check the Control Unit fan. Note: The alarm is automatically withdrawn once the limit value has been fallen below.

F01010	Drive type unknown
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An unknown drive type was found.
Remedy:	- replace Power Module.
	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version.
	- contact Technical Support.
F01015	Internal software error
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON Cause:
	An internal software error has occurred.
	Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

A01016 (F)	Firmware changed
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE

Cause: At least one firmware file in the directory was illegally changed on the non-volatile memory (memory card/device
memory) with respect to the version when shipped from the factory.
Alarm value (r2124, interpret decimal):
0 : Checksum of one file is incorrect.
1: File missing.
2: Too many files.
3: Incorrect firmware version.
4: Incorrect checksum of the back-up file.
Remedy: For the non-volatile memory for the firmware (memory card/device memory), restore the delivery condition.
Note:
The file involved can be read out using parameter r9925.
The status of the firmware check is displayed using r9926.

A01017	Component lists changed
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been illegally changed with respect to that supplied from the factory. No changes are permitted in this directory.
	Alarm value (r2124, interpret decimal):
	zyx dec: $\mathrm{x}=$ Problem, $\mathrm{y}=$ Directory, $\mathrm{z}=$ File name
	$x=1$: File does not exist.
	$x=2$: Firmware version of the file does not match the software version.
	$x=3$: File checksum is incorrect.
	$y=0$: Directory /SIEMENS/SINAMICS/DATA/
	$y=1$: Directory /ADDON/SINAMICS/DATA/
	$z=0$: File MOTARM.ACX
	$\mathrm{z}=1$: File MOTSRM.ACX
	$\mathrm{z}=2$: File MOTSLM.ACX
	$\mathrm{z}=3$: File ENCDATA.ACX
	$\mathrm{z}=4$: File FILTDATA.ACX
	$z=5$: File BRKDATA.ACX
	$\mathrm{z}=6$: File DAT_BEAR.ACX
	$\mathrm{z}=7$: File CFG_BEAR.ACX
Remedy:	For the file on the memory card involved, restore the status originally supplied from the factory.
F01018	Booting has been interrupted several times
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	Module booting was interrupted several times. As a consequence, the module boots with the factory setting.
	Possible reasons for booting being interrupted:
	- power supply interrupted.
	- CPU crashed.
	- parameterization invalid.
Remedy:	- carry out a POWER ON (switch-off/switch-on). After switching on, the module reboots from the valid parameterization (if available).
	- restore the valid parameterization.
	Examples:
	a) Carry out a first commissioning, save, carry out a POWER ON (switch-off/switch-on).
	b) Load another valid parameter backup (e.g. from the memory card), save, carry out a POWER ON (switch-off/switch-on).
	Note:
	If the fault situation is repeated, then this fault is again output after several interrupted boots.
A01019	Writing to the removable data medium unsuccessful
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The write access to the removable data medium was unsuccessful.
Remedy:	Remove and check the removable data medium. Then run the data backup again.

A01020	Writing to RAM disk unsuccessful
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A write access to the internal RAM disk was unsuccessful.
Remedy:	Adapt the file size for the system logbook to the internal RAM disk (p9930).

A01021	Removable data medium as USB data storage medium from the PC used
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The removable data medium is used as USB data storage medium from a PC
	As a consequence, the drive cannot access the removable data medium. When backing up, the configuration data
cannot be saved on the removable data medium.	
	Alarm value (r2124, interpret decimal):
	1: The know-how protection as well as the copy protection for the removable data medium is active. Backup is
inhibited.	
	2: The configuration data are only backed up in the Control Unit.
Remedy:	See also: r7760 (Write protection/know-how protection status), r9401 (Safely remove memory card status)
	Deactivate the USB connection to the PC and back up the configuration data.
	Note:
	The alarm is automatically canceled when disconnecting the USB connection or when removing the removable data
medium.	
	See also: r9401 (Safely remove memory card status)

F01023	Software timeout (internal)
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software timeout has occurred.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

A01028 (F)	Configuration error
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameterization that was downloaded was generated with a different module type (Order No., MLFB).
Remedy:	Save parameters in a non-volatile fashion (p0971 = 1).

F01030 Sign-of-life failure for master control

Message class: Communication error to the higher-level control system (9)
Reaction: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge: IMMEDIATELY
Cause: \quad For active PC master control, no sign-of-life was received within the monitoring time. The master control was returned to the active BICO interconnection.
Remedy: Set the monitoring time higher at the PC or, if required, completely disable the monitoring function. For the commissioning software, the monitoring time is set as follows:
<Drive> -> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the monitoring time in milliseconds.
Notice:
The monitoring time should be set as short as possible. A long monitoring time means a late response when the communication fails!

F01033	Units changeover: Reference parameter value invalid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing over the units to the referred representation type, it is not permissible for any of the required reference parameters to be equal to 0.0
	Fault value (r0949, parameter):
	Reference parameter whose value is 0.0 .
	See also: p0505 (Selecting the system of units), p0595 (Technological unit selection)
Remedy:	Set the value of the reference parameter to a number different than 0.0 .
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
F01034	Units changeover: Calculation parameter values after reference value change unsuccessful
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The change of a reference parameter meant that for an involved parameter the selected value was not able to be recalculated in the per unit representation. The change was rejected and the original parameter value restored.
	Fault value (r0949, parameter):
	Parameter whose value was not able to be re-calculated.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	- Select the value of the reference parameter such that the parameter involved can be calculated in the per unit representation.
	- Technology unit selection (p0595) before changing the reference parameter p0596, set p0595 $=1$.

A01035 (F)

ACX: Parameter back-up file corrupted

Message class: Hardware/software error (1)
Reaction: NONE

Acknowledge: NONE

Cause: When the Control Unit is booted, no complete data set was found from the parameter back-up files. The last time that the parameterization was saved, it was not completely carried out.
It is possible that the backup was interrupted by switching off or withdrawing the memory card.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
aa $=01$ hex:
Power up was realized without data backup. The drive is in the factory setting.
aa $=02$ hex:
The last available internal backup data record was loaded. The parameterization must be checked. It is recommended that the parameterization is downloaded again.
aa $=03$ hex:
The last available data record from the memory card was loaded. The parameterization must be checked.
aa $=04$ hex:
An invalid data backup was loaded from the memory card into the drive. The drive is in the factory setting.
dd, cc, bb:
Only for internal Siemens troubleshooting.
See also: p0971 (Save parameters)
Remedy: - Download the project again with the commissioning software.

- save all parameters (p0971 = 1 or "copy RAM to ROM").

F01036 (A)	ACX: Parameter back-up file missing
Message class:	Hardware/software error (1)
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When downloading the device parameterization, a parameter back-up file PSxxxyyy.ACX associated with a drive object cannot be found.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy = 000 --> consistency back-up file
	yyy = 001 ... 062 --> drive object number
	yyy = 099 --> PROFIBUS parameter back-up file
	Byte 2, 3, 4:
	Only for internal Siemens troubleshooting.
Remedy:	If you have saved the project data using the commissioning software, carry out a new download for your project.
	Save using the function "Copy RAM to ROM" or with p0971 = 1.
	This means that the parameter files are again completely written into the non-volatile memory.
	Note:
	If the project data have not been backed up, then a new first commissioning is required.
F01038 (A)	ACX: Loading the parameter back-up file unsuccessful
Message class:	Hardware/software error (1)
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when downloading PSxxxyyy.ACX or PTxxxyyy.ACX files from the non-volatile memory.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy = 000 --> consistency back-up file
	yyy = 001 ... 062 --> drive object number
	yyy = 099 --> PROFIBUS parameter back-up file
	Byte 2:
	255: Incorrect drive object type.
	254: Topology comparison unsuccessful -> drive object type was not able to be identified.
	Reasons could be:
	- incorrect component type in the actual topology
	- Component does not exist in the actual topology.
	- Component not active.
	Additional values:
	Only for internal Siemens troubleshooting.
	Byte 4, 3:
	Only for internal Siemens troubleshooting.
Remedy:	- if you have saved the project data using the commissioning software, download the project again. Save using the function "Copy RAM to ROM" or with $\mathrm{p} 0971=1$. This means that the parameter files are again completely written to the non-volatile memory.
	- replace the memory card or Control Unit.

4.2 List of faults and alarms

	Fault value (r0949, interpret hexadecimal): dcba hex
	$\mathrm{a}=$ yyy in the file names PSxxxyyy.***
	a = 000 --> consistency back-up file
	$\mathrm{a}=001$... 062 --> drive object number
	$\mathrm{a}=099$--> PROFIBUS parameter back-up file
	$b=x x x$ in the file names PSxxxyyy.***
	$b=000-->$ data save started with p0971 = 1
	$b=010$--> data save started with p0971 = 10
	$b=011-->$ data save started with p0971 = 11
	$b=012$--> data save started with p0971 = 12
	d, c:
	Only for internal Siemens troubleshooting.
Remedy:	- check the file attribute of the files (PSxxxyyy.***, CAxxxyyy.***, CCxxxyyy.***) and, if required, change from "read only" to "writeable".
	- check the free memory space in the non-volatile memory. Approx. 80 kbyte of free memory space is required for every drive object in the system.
	- replace the memory card or Control Unit.
F01040	Save parameter settings and carry out a POWER ON
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A parameter has been changed that requires the parameters to be backed up and the Control Unit to be switched OFF and ON again.
Remedy:	- Save parameters (p0971).
	- carry out a POWER ON (switch-off/switch-on) for the Control Unit.

F01042	Parameter error during project download
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter
	value).
	For the specified parameter, it was detected that dynamic limits were exceeded that may possibly depend on other
parameters.	
	Fault value (r0949, interpret hexadecimal):
	ccbbaaaa hex
	aaaa = Parameter
	bb = Index
	cc = fault cause
0: Parameter number illegal.	
1: Parameter value cannot be changed.	
	2: Lower or upper value limit exceeded.
3: Sub-index incorrect.	
	4: No array, no sub-index.
5: Data type incorrect.	
6: Setting not permitted (only resetting).	
7: Descriptive element cannot be changed.	
9: Descriptive data not available.	
11: No master control.	
15: No text array available.	
17: Task cannot be executed due to operating state.	
20: Illegal value.	
21: Response too long.	

	22: Parameter address illegal.
	23: Format illegal.
	24: Number of values not consistent.
	108: Unit unknown.
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	- enter the correct value in the specified parameter.
	- identify the parameter that restricts the limits of the specified parameter.
F01043	Fatal error at project download
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A fatal error was detected when downloading a project using the commissioning software.
	Fault value (r0949, interpret decimal):
	1: Device status cannot be changed to Device Download (drive object ON?).
	2: Incorrect drive object number.
	8: Maximum number of drive objects that can be generated exceeded.
	11: Error while generating a drive object (global component).
	12: Error while generating a drive object (drive component).
	13: Unknown drive object type.
	14: Drive status cannot be changed to "ready for operation" (r0947 and r0949).
	15: Drive status cannot be changed to drive download.
	16: Device status cannot be changed to "ready for operation".
	18: A new download is only possible if the factory settings are restored for the drive unit.
	20: The configuration is inconsistent.
	21: Error when accepting the download parameters.
	22: SW-internal download error.
	100: The download was canceled, because no write requests were received from the commissioning client (e.g. for communication error).
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	- use the current version of the commissioning software.
	- modify the offline project and download again (e.g. compare the motor and Power Module in the offline project and on the drive).
	- change the drive state (is a drive rotating or is there a message/signal?).
	- carefully note any other messages/signals and remove their cause.
	- boot from previously saved files (switch-off/switch-on or p0970).
F01044	CU: Descriptive data error
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An error was detected when loading the descriptive data saved in the non-volatile memory.
Remedy:	Replace the memory card or Control Unit.
A01045	Configuring data invalid
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the parameter files PSxxxyyy.ACX, PTxxxyyy.ACX, CAxxxyyy.ACX, or CCxxxyyy.ACX saved in the non-volatile memory. Because of this, under certain circumstances, several of the saved parameter values were not able to be accepted. Also see r9406 up to r9408.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.

4.2 List of faults and alarms

Remedy: - check the parameters displayed in r9406 up to r9408, and correct these if required.

- Restore the factory setting using ($p 0970=1$) and re-load the project into the drive unit.

Then save the parameterization in STARTER using the function "Copy RAM to ROM" or with p0971 = 1. This overwrites the incorrect parameter files in the non-volatile memory - and the alarm is withdrawn.
See also: r9406 (PS file parameter number parameter not transferred), r9407 (PS file parameter index parameter not transferred), r9408 (PS file fault code parameter not transferred)

A01049	It is not possible to write to file
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted. Alarm value (r2124, interpret decimal):
Remedy:	Drive object number. Check whether the "write protected" attribute has been set for the files in the non-volatile memory under .../USER/SINAMICS/DATA/... When required, remove write protection and save again (e.g. set p0971 to 1).

F01054	CU: System limit exceeded
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one system overload has been identified.
	Fault value (r0949, interpret decimal):
	1: Computing time load too high (r9976[1]).
	5: Peak load too high (r9976[5]).
	Note:
	As long as this fault is present, it is not possible to save the parameters (p0971).
Remedy:	See also: r9976 (System utilization)
	For fault value = 1, 5:
	- reduce the computing time load of the drive unit (r9976[1] and r9976[5]) to under 100 \%.
	- check the sampling times and adjust if necessary (p0115, p0799, p4099).
	- deactivate function modules.
	- deactivate drive objects.
	- remove drive objects from the target topology.
	- note the DRIVE-CLiQ topology rules and if required, change the DRIVE-CLiQ topology.
	When using the Drive Control Chart (DCC) or free function blocks (FBLOCKS), the following applies:
	- the computing time load of the individual run-time groups on a drive object can be read out in r21005 (DCC) or
r20005 (FBLOCKS).	

- if necessary, the assignment of the run-time group (p21000, p20000) can be changed in order to increase the sampling time (r21001, r20001).
- if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).

A01064 (F)	CU: Internal error (CRC)
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A checksum error (CRC error) has occurred in the Control Unit program memory
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

F01068	CU: Data memory memory overflow
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The utilization for a data memory area is too large.
	Fault value (r0949, interpret binary):
	Bit 0 = 1: High-speed data memory 1 overloaded
	Bit $1=1:$ High-speed data memory 2 overloaded
	Bit 2 $=1:$ High-speed data memory 3 overloaded
	Bit $3=1:$ High-speed data memory 4 overloaded
Remedy:	- deactivate the function module.
	- deactivate drive object.
	- remove the drive object from the target topology.

A01069	Parameter backup and device incompatible
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter backup on the memory card and the drive unit do not match.
	The module boots with the factory settings.
	Example:
	Devices A and B. are not compatible and a memory card with the parameter backup for device A is inserted in device

Remedy: - insert a memory card with compatible parameter backup and carry out a POWER ON.

- insert a memory card without parameter backup and carry out a POWER ON.
- if required, withdraw the memory card and carry out POWER ON.
- save the parameters ($p 0971=1$).

F01072	Memory card restored from the backup copy
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The Control Unit was switched-off while writing to the memory card. This is why the visible partition became defective.
Remedy:	After switching on, the data from the non-visible partition (backup copy) were written to the visible partition. Check that the firmware and parameterization is up-to-date.

A01073 (N)	POWER ON required for backup copy on memory card
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter assignment on the visible partition of the memory card has changed.
	In order that the backup copy on the memory card is updated on the non-visible partition, it is necessary to carry out
	a POWER ON or hardware reset (p0972) of the Control Unit.
	Note:
	It is possible that a new POWER ON is requested via this alarm (e.g. after saving with p0971 = 1).
Remedy:	- carry out a POWER ON (power off/on) for the Control Unit.
	- carry out a hardware reset (RESET button, p0972).

N01101 (A)	CU: memory card not available
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory card is not available for the drive.
Remedy:	Insert a memory card.
	If Starter is not active, interrupt the USB connection to the PC

F01105 (A)	CU: Insufficient memory
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1
Acknowledge:	POWER ON
Cause:	Too many data sets are configured on this Control Unit. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- reduce the number of data sets.

F01107	Save to memory card unsuccessful
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A data save to the memory card was not able to be successfully carried out.
	- Memory card is defective.
	- insufficient space on memory card.
	Fault value (r0949, interpret decimal):
	1: The file on the RAM was not able to be opened.
	2: The file on the RAM was not able to be read.
	3: A new directory could not be created on the memory card.
	4: A new file could not be created on the memory card.
	5: A new file could not be written on the memory card.
	- try to save again.
	- replace the memory card or Control Unit.

F01112	CU: Power unit not permissible
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The connected power unit cannot be used together with this Control Unit.
	Fault value (ro949, interpret decimal):
	1: Power unit is not supported (e.g. PM340).
Remedy:	Replace the power unit that is not permissible by a component that is permissible.

F01120 (A)	Terminal initialization has failed
Message class:	Hardware/software error (1)
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error occurred while the terminal functions were being initialized.
	Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components. - upgrade firmware to later version. - rentact Technical Support.

F01122 (A)	Frequency at the measuring probe input too high
Message class:	Application/technological function faulted (17)
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The frequency of the pulses at the measuring probe input is too high.
	Fault value (r0949, interpret decimal):
	1: DI 1 (term. 6)
	2: DI (term. 8)
Remedy:	Reduce the frequency of the pulses at the measuring probe input.

F01152	CU: Invalid constellation of drive object types
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	It is not possible to simultaneously operate drive object types SERVO, VECTOR and HLA.
	A maximum of 2 of these drive object types can be operated on a Control Unit.
Remedy:	- switch off the unit. - restrict the use of drive object types SERVO, VECTOR, HLA to a maximum of 2. - re-commission the unit.

F01205	CU: Time slice Overflow
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	Insufficient computation time.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	Contact Technical Support.

F01250	CU: CU-EEPROM incorrect read-only data
Message class:	Hardware/software error (1)
Reaction:	NONE (OFF2)
Acknowledge:	POWER ON
Cause:	Error when reading the read-only data of the EEPROM in the Control Unit. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. Remedy:
	- carry out a POWER ON.
- replace the Control Unit.	

A01251	CU: CU-EEPROM incorrect read-write data
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when reading the read-write data of the EEPROM in the Control Unit.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	For alarm value r2124 < 256, the following applies:
	- carry out a POWER ON.
	- replace the Control Unit.
	For alarm value r2124 >= 256, the following applies:
	- clear the fault memory (p0952 = 0).
	- replace the Control Unit.

F01257	CU: Firmware version out of date
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The Control Unit firmware is too old.
	Fault value (r0949, interpret hexadecimal):
	bbbbbbaa hex: aa = unsupported component
	aa $=01$ hex $=1$ dec:
	The firmware being used does not support the Control Unit.
	aa $=02$ hex $=2$ dec:
	The firmware being used does not support the Control Unit.

4.2 List of faults and alarms

For fault value $=8 y y$ in addition:

- check the clock cycles settings (p0112, p0115, p4099). Clock cycles on a DRIVE-CLiQ line must be perfect integer multiples of one another. As clock cycle on a line, all clock cycles of all drive objects in the previously mentioned parameters apply, which have components on the line involved.
For fault value $=9 \mathrm{yy}$ in addition:
- check the clock cycles settings (p0112, p0115, p4099). The lower the numerical value difference between two clock cycles, the higher the lowest common multiple. This behavior has a significantly stronger influence, the higher the numerical values of the clock cycles.

F01505 (A)	BICO: Interconnection cannot be established
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A PROFIdrive telegram has been set (p0922).
	An interconnection contained in the telegram was not able to be established.
	Fault value (r0949, interpret decimal):
	Parameter receiver that should be changed.
Remedy:	Establish another interconnection.
F01510	BICO: Signal source is not float type
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested connector output does not have the correct data type. This interconnection is not established.
	Fault value (r0949, interpret decimal):
Remedy:	Parameter number to which an interconnection should be made (connector output).
	Interconnect this connector input with a connector output having a float data type.

F01511 (A)	BICO: Interconnection with different scalings
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values. - the BICO output has different normalized units than the BICO input. - message only for interconnections within a drive object. Example: The BICO output has, as normalized unit, voltage and the BICO input has current. This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input. p2002: contains the reference value for current p2001: contains the reference value for voltage Fault value (r0949, interpret decimal): Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
F01512	BICO: No scaling available
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An attempt was made to determine a conversion factor for a scaling that does not exist. Fault value (r0949, interpret decimal): Unit (e.g. corresponding to SPEED) for which an attempt was made to determine a factor.
Remedy:	Apply scaling or check the transfer value.

F01513 (N, A)	BICO: Interconnection cross DO with different scalings
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and
	BICO input using the reference values.
	An interconnection is made between different drive objects and the BICO output has different normalized units than
the BICO input or the normalized units are the same but the reference values are different.	
	Example 1:
	BICO output with voltage normalized unit, BICO input with current normalized unit, BICO output and BICO input lie in different drive objects. This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input.
	p2002: contains the reference value for current
	p2001: contains the reference value for voltage
	Example 2:
	BICO output with voltage normalized unit in drive object 1 (DO1), BICO input with voltage normalized unit in drive
object 2 (DO2). The reference values for voltage (p2001) of the two drive objects have different values. This means	
that the factor p2001(DO1)/p2001 (DO2) is calculated between the BICO output and the BICO input.	
	p2001: contains the reference value for voltage, drive objects 1, 2
	Fault value (r0949, interpret decimal):
Parameter number of the BICO input (signal sink).	
Remedy:	Not necessary.

A01514 (F)	BICO: Error when writing during a reconnect
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	During a reconnect operation (e.g. while booting or downloading - but can also occur in normal operation) a
	parameter was not able to be written to.
	Example:
	When writing to BICO input with double word format (DWORD), in the second index, the memory areas overlap (e.g.
	p8861). The parameter is then reset to the factory setting.
	Alarm value (r2124, interpret decimal):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.

F01515 (A) BICO: Writing to parameter not permitted as the master control is active

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: NONE

Acknowledge: IMMEDIATELY
Cause: When changing the number of CDS or when copying from CDS, the master control is active.
Remedy: If required, return the master control and repeat the operation.

A01590 (F)	Drive: Motor maintenance interval expired
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected service/maintenance interval for this motor was reached.
	Alarm value (r2124, interpret decimal):
	Motor data set number.
	See also: p0650 (Actual motor operating hours), p0651 (Motor operating hours maintenance interval)
Remedy:	Carry out service/maintenance and reset the service/maintenance interval.

F01600	SI P1 (CU): STOP A initiated
Message class:	Safety monitoring channel has identified an error (10)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 has detected an error and initiated a STOP A. - forced checking procedure (test stop) of the safety switch-off signal path on processor 1 unsuccessful. - subsequent response to fault F01611 (defect in a monitoring channel). Fault value (r0949, interpret decimal): 0 : Stop request from processor 2. 1005: Pulses suppressed although STO not selected and there is no internal STOP A present. 1010: Pulses enabled although STO is selected or an internal STOP A is present. 1011: Internal fault for the pulse enable in the Power Module. 9999: Subsequent response to fault F01611.
Remedy:	- select Safe Torque Off and de-select again. - carry out a POWER ON (switch-off/switch-on) for all components. - replace Power Module involved. For fault value = 9999: - carry out diagnostics for fault F01611. Note: PM: Power Module STO: Safe Torque Off
F01611 (A)	SI P1 (CU): Defect in a monitoring channel
Message class:	Safety monitoring channel has identified an error (10)
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 has detected a fault in the data cross-check between the two monitoring channels and has initiated a STOP F.
	Fault F01600 (SI P1: STOP A initiated) is output as a consequence of this fault.
	Fault value (r0949, interpret decimal):
	0 : Stop request from the other monitoring channel.
	1 ... 999:
	Number of the cross-compared data that resulted in this fault. This number is also displayed in r9795. 2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits. 3: SI F-DI changeover discrepancy time (p9650, p9850).
	8: SI PROFIsafe address (p9610, p9810).
	9: SI debounce time for STO (p9651, p9851).
	1000: Watchdog timer has expired.
	Within the time of approx. $5 \times$ p9650, alternatively, the following was defined:
	- the signal at F-DI continually changed with time intervals less than or equal to the discrepancy time ($\mathrm{p} 9650 / \mathrm{p} 9850$).
	- via PROFIsafe, STO (also as subsequent response) was continually selected and deselected with time intervals less than or equal to the discrepancy time (p9650/p9850).
	1001, 1002: Initialization error, change timer / check timer.
	1950: Module temperature outside the permissible temperature range.
	1951: Module temperature not plausible.
	2000: Status of the STO selection for both monitoring channels different.
	2001: Feedback signal of safe pulse suppression for both monitoring channels different.
	2002: Status of the delay timer SS1 for both monitoring channels different (status of the timer in p9650/p9850). 2003: Status of the STO terminal for both monitoring channels different. $6000 \text {... 6166: }$
	PROFIsafe fault values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
	For these fault values, the fail-safe control signals (fail-safe values) are transferred to the safety functions. 6000: An internal software error has occurred (only for internal Siemens troubleshooting).
	6064 ... 6071: error when evaluating the F parameter. The values of the transferred F parameters do not match the expected values in the PROFIsafe driver.

6064: Destination address and PROFIsafe address are different (F_Dest_Add).
6065: Destination address not valid (F_Dest_Add).
6066: Source address not valid (F_Source_Add).
6067: Watchdog time not valid (F_WD_Time).
6068: Incorrect SIL level (F_SIL).
6069: Incorrect F-CRC length (F_CRC_Length).
6070: Incorrect F parameter version (F_Par_Version).
6071: CRC error for the F parameters (CRC1). The transferred CRC value of the F parameters does not match the value calculated in the PROFIsafe driver.
6072: F parameterization is inconsistent.
6165: A communications error was identified when receiving the PROFIsafe telegram. The fault may also occur if an inconsistent or out-of-date PROFIsafe telegram has been received after switching the Control Unit off and on or after plugging in the PROFIBUS/PROFINET cable.
6166: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
Remedy:
For fault values 1 ... 999 described in "Cause":

- check the cross data comparison that resulted in a STOP F.
- carry out a POWER ON (switch-off/switch-on).

For fault value $=1000$:

- check the wiring of the F-DI (contact problems).
- PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller.
- check the discrepancy time, and if required, increase the value (p9650/p9850).

For fault value = 1001, 1002:

- carry out a POWER ON (switch-off/switch-on).

For fault value $=1950$, 1951:

- Operate the Control Unit in the permissible temperature range.
- replace Control Unit.

For fault value = 2000, 2001, 2002, 2003:

- check the discrepancy time F-DI changeover and if required, increase the value (p9650/p9850).
- check the wiring of the F-DI (contact problems).
- check the causes of the STO selection in r9772.

For fault value $=6000$:

- carry out a POWER ON (switch-off/switch-on).
- upgrade firmware to later version.
- contact Technical Support.
- replace Control Unit.

For fault value $=6064$:

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave.
- check the setting of the PROFIsafe address on processor 1 (p9610) and on processor 2 (p9810).

For fault value $=6065$:

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave. It is not permissible for the destination address to be either 0 or FFFF!
For fault value $=6066$:
- check the setting of the value in the F parameter F_Source_Add at the PROFIsafe slave. It is not permissible for the source address to be either 0 or FFFF!
For fault value $=6067$:
- check the setting of the value in the F parameter F_WD_Time at the PROFIsafe slave. It is not permissible for the watch time to be 0 !
For fault value $=6068$:
- check the setting of the value in the F parameter F_SIL at the PROFIsafe slave. The SIL level must correspond to SIL2!
For fault value $=6069$:
- check the setting of the value in the F parameter F_CRC_Length at the PROFIsafe slave. The setting of the CRC2 length is 2-byte CRC in the V1 mode and 3-byte CRC in the V2 mode! For fault value $=6070$:
- check the setting of the value in the F parameter F_Par_Version at the PROFIsafe slave. The value for the F parameter version is 0 in the V1 mode and 1 in the V2 mode!

For fault value $=6071$:

- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and, if required, update.
For fault value $=6072$:
- check the settings of the values for the F parameters and, if required, correct.

The following combinations are permissible for F parameters F_CRC_Length and F_Par_Version:
F_CRC_Length $=2$-byte CRC and F_Par_Version $=0$
F_CRC_Length = 3-byte CRC and F_Par_Version = 1
For fault value $=6165$:

- if the fault occurs after powering up or after inserting the PROFIBUS/PROFINET cable, acknowledge the fault.
- check the configuration and communication at the PROFIsafe slave.
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- check whether all F parameters of the drive match the F parameters of the F host.

For fault value $=6166$:

- check the configuration and communication at the PROFIsafe slave.
- check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary.
- evaluate diagnostic information in the F host.
- check PROFIsafe connection.
- check whether all F parameters of the drive match the F parameters of the F host.

For fault values that are described in "Cause":

- carry out a POWER ON (switch-off/switch-on).
- contact Technical Support.
- replace Control Unit.

Note:
F-DI: Fail-safe Digital Input
STO: Safe Torque Off

N01620 (F, A)	SI P1 (CU): Safe Torque Off active
Message class:	Safety monitoring channel has identified an error (10)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Torque Off" (STO) function has been selected on processor 1 using the input terminal and is active.
	Note:
	This message does not result in a safety stop response.
Remedy:	Not necessary.
	Note:
	STO: Safe Torque Off
F01625	SI P1 (CU): Sign-Of-life error in safety data
Message class:	Internal (DRIVE-CLiQ) communication error (12) Reaction: Acknowledge:
OFF2 Cause: IMMEDIATELY (POWER ON) The drive-integrated "Safety Integrated" function on processor 1 has detected an error in the sign-of-life of the safety data and initiated a STOP A.	
	- there is a communication error between processor 1 and processor 2 or communication has failed.
- a time slice overflow of the safety software has occurred.	

F01640	SI P1 (CU): component replacement identified and acknowledgment/save required
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The "Safety Integrated" function integrated in the drive has identified that a component has been replaced. It is no longer possible to operate the drive.
	When safety functions are active, after a component has been replaced it is necessary to carry out a partial acceptance test.
	Fault value (r0949, interpret binary):
	Bit $0=1$:
	It has been identified that the Control Unit has been replaced.
	Bit $1=1$:
	It has been identified that the Motor Module/Hydraulic Module has been replaced.
	Bit $2=1$:
	It has been identified that the Power Module has been replaced.
	Bit $3=1$:
	It has been identified that the Sensor Module channel 1 has been replaced.
	Bit $4=1$:
	It has been identified that the Sensor Module channel 2 has been replaced.
	Bit 5 = 1:
	It has been identified that the sensor channel 1 has been replaced.
	Bit $6=1$:
	It has been identified that sensor channel 2 has been replaced.
Remedy:	- acknowledge component replacement (p9702 = 29).
	- save all parameters ($\mathrm{p} 0977=1$ or p0971 = 1 or "copy RAM to ROM").
	- acknowledge fault (e.g. BI: p2103).
	Note:
	In addition to the fault, diagnostics bits r9776.2 and r9776.3 are set.
	See also: r9776 (SI diagnostics)
F01641	SI P1 (CU): component replacement identified and save required
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The "Safety Integrated" function integrated in the drive has identified that a component has been replaced.
	No additional fault response is initiated, therefore operation of the particular drive is not restricted.
	When safety functions are active, after a component has been replaced it is necessary to carry out a partial acceptance test.
	Fault value (r0949, interpret binary):
	Bit $0=1$:
	It has been identified that the Control Unit has been replaced.
	Bit $1=1$:
	It has been identified that the Motor Module/Hydraulic Module has been replaced.
	Bit 2 = 1:
	It has been identified that the Power Module has been replaced.
	Bit 3 = 1 : \quad
	It has been identified that the Sensor Module channel 1 has been replaced.
	Bit $4=1$:
	It has been identified that the Sensor Module channel 2 has been replaced.
	Bit 5 = 1:
	It has been identified that the sensor channel 1 has been replaced.
	Bit $6=1$:
	It has been identified that sensor channel 2 has been replaced.

Remedy:	- save all parameters (p0977 = 1 or p0971 = 1 or "copy RAM to ROM"). - acknowledge fault (e.g. BI: p2103). See also: r9776 (SI diagnostics)
F01649	SI P1 (CU): Internal software error
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal error in the Safety Integrated software on processor 1 has occurred.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- re-commission the "Safety Integrated" function and carry out a POWER ON.
	- contact Technical Support.
	- replace Control Unit.
F01650	SI P1 (CU): Acceptance test required
Message class:	Safety monitoring channel has identified an error (10)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 requires an acceptance test.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, interpret decimal):
	130: Safety parameters for processor 2 not available.
	Note:
	This fault value is always output when Safety Integrated is commissioned for the first time.
	1000: Reference and actual checksum on processor 1 are not identical (booting).
	- at least one checksum-checked piece of data is defective.
	2000: Reference and actual checksum on processor 1 are not identical (commissioning mode).
	- reference checksum incorrectly entered on processor 1 (p9799 not equal to r9798).
	2001: Reference and actual checksum on processor 2 are not identical (commissioning mode).
	- reference checksum incorrectly entered on processor 2 (p9899 not equal to r9898).
	2002: Enable of safety-related functions between the processor 1 and processor 2 differ (p9601 not equal to p9801).
	2003: Acceptance test is required as a safety parameter has been changed.
	2004: An acceptance test is required because a project with enabled safety-functions has been downloaded.
	2005: The Safety logbook has identified that a functional safety checksum has changed. An acceptance test is required.
	2020: Error when saving the safety parameters for the processor 2.
	9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy:	For fault value = 130:
	- carry out safety commissioning routine.
	For fault value = 1000:
	- again carry out safety commissioning routine.
	- replace the memory card or Control Unit.
	- Using STARTER, activate the safety parameters for the drive involved (change settings, copy parameters, activate settings).
	For fault value = 2000:
	- check the safety parameters on processor 1 and adapt the reference checksum (p9799).
	For fault value = 2001:
	- check the safety parameters on processor 2 and adapt the reference checksum (p9899).

For fault value $=2002$:

- enable the safety-related functions on processor 1 and check processor $2($ p9601 $=$ p9801 $)$.

For fault value $=2003,2004,2005$:

- carry out an acceptance test and generate an acceptance report.

The fault with fault value 2005 can only be acknowledged when the "STO" function is de-selected.
For fault value $=2010$:

- check the enable the safety-related brake control on both monitoring channels (p9602 = p9802).

For fault value $=2020$:

- again carry out safety commissioning routine.
- replace the memory card or Control Unit.

For fault value $=9999$:

- carry out diagnostics for the other safety-related fault that is present.

Note:
STO: Safe Torque Off
See also: p9799 (SI reference checksum SI parameters (processor 1)), p9899 (SI reference checksum SI parameters (processor 2))

F01651
Message class:
Reaction:
Acknowledge:
Cause:

SI P1 (CU): Synchronization safety time slices unsuccessful

Hardware/software error (1)
OFF2
IMMEDIATELY (POWER ON)

processor 2. This synchronization routine was unsuccessful.	
	Note:
	This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):	
Remedy:	Only for internal Siemens troubleshooting.
	Carry out a POWER ON (switch-off/switch-on).

F01653 SI P1 (CU): PROFIBUS/PROFINET configuration error

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction:
Acknowledge:
Cause:

Remedy:
NONE (OFF1, OFF2, OFF3)
IMMEDIATELY (POWER ON)
There is a PROFIBUS/PROFINET configuration error for using Safety Integrated monitoring functions with a higherlevel control.
Note:
For safety functions that have been enabled, this fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
200: A safety slot for receive data from the control has not been configured.
210, 220: The configured safety slot for the receive data from the control has an unknown format.
230: The configured safety slot for the receive data from the F-PLC has the incorrect length.
231: The configured safety slot for the receive data from the F-PLC has the incorrect length.
250: A PROFIsafe slot is configured in the higher-level F control, however PROFIsafe is not enabled in the drive.
300: A safety slot for the send data to the control has not been configured.
310, 320: The configured safety slot for the send data to the control has an unknown format.
330: The configured safety slot for the send data to the F-PLC has the incorrect length.
331: The configured safety slot for the send data to the F-PLC has the incorrect length.
The following generally applies:

- check and, if necessary, correct the PROFIBUS/PROFINET configuration of the safety slot on the master side.
- upgrade the Control Unit software.

For fault value $=250$:

- remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive.

For fault value $=231,331$:

- configure PROFIsafe telegram 30 in the F-PLC.

4.2 List of faults and alarms

- exit the safety commissioning mode ($\mathrm{p} 0010=0$).
- save all parameters (p0971 = 1 or "copy RAM to ROM").
- carry out a POWER ON (switch-off/switch-on) for the Control Unit.

For fault value $=132$:

- check the electrical cabinet design and cable routing for EMC compliance

F01658	SI P1 (CU): PROFIsafe telegram number not suitable
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The PROFIsafe telegram number in p60022 is unsuitable for the enabled safety functions.
	Possible causes:
	- When PROFIsafe is not enabled (p9601.3 = 0), then it is not permissible to select a PROFIsafe telegram in p60022.
	- When PROFIsafe is enabled (p9601.3 = 1), then a PROFIsafe telegram must be selected in p60022.
	Note:
	This fault does not result in a safety stop response.
	See also: p9601 (SI enable functions integrated in the drive (processor 1)), p60022 (PROFIsafe telegram selection)
	Select the telegram number that matches the Safety functions that have been enabled.

For fault value $=20$:

- correct the enable setting (p9601).

For fault value $=21$

- use a Power Module that supports the Safety Integrated functions.

For fault value $=26$:

- deactivate the simulation mode for the set signal source for STO (p9620) (p0795)
- deactivate the simulation mode (p0795) for the F-DIs used by the Safety Integrated functions (r10049, p10006, p10009).
- For the set test stop of the F-DO with feedback signal input (p10046, p10047), check the simulation mode, and if required, deactivate (p0795).
For fault value = 28: use the power unit with the feature "STO via terminals at the Power Module".
Note:
F-DI: Fail-safe Digital Input
STO: Safe Torque Off
See also: p9601 (SI enable functions integrated in the drive (processor 1)), p9761 (SI password input), p9801 (SI enable functions integrated in the drive (processor 2))

F01660	SI P1 (CU): Safety-related functions not supported
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Power Module does not support the safety-related functions. Safety Integrated cannot be commissioned.
	Note:
	This fault does not result in a safety stop response.
Remedy:	- use a Power Module that supports the safety-related functions.

F01662	Error internal communications
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A module-internal communication error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check whether an impermissible voltage is connected at one of the digital outputs.
	- check whether a digital output is loaded with an impermissible current.
	- upgrade firmware to later version.
	- contact Technical Support.

F01663
Message class:
Reaction:
Acknowledge:
Cause:

SI P1 (CU): Copying the SI parameters rejected
Error in the parameterization / configuration / commissioning procedure (18)
OFF2
IMMEDIATELY (POWER ON)
In p9700, the value 208 is saved or was entered offline
This is the reason that when booting, an attempt is made to copy Safety Integrated parameters from processor 1 to processor 2. However, no safety-relevant function has been selected on processor 1 (p9601 = 0). This is the reason that copying is not possible.
Note:
This fault does not result in a safety stop response.
SI: Safety Integrated
See also: p9700 (SI copy function)
Remedy:

- Set p9700 to 0.
- Check p9601 and if required, correct.
- restart the copying function by entering the corresponding value into p9700.

4.2 List of faults and alarms

F01665

SI P1 (CU): System is defective

Message class: Hardware/software error (1)
Reaction: OFF2

Acknowledge: IMMEDIATELY
Cause: A system defect was detected before the last boot or in the actual one. The system might have been rebooted (reset).
Fault value (r0949, interpret hexadecimal):
200000 hex, 400000 hex, 8000yy hex (yy any):

- fault in the actual booting/operation.

Additional values:

- defect before the last time that the system booted.

Remedy: - carry out a POWER ON (switch-off/switch-on).

- upgrade firmware to later version.
- contact Technical Support.

For fault value $=200000$ hex, 400000 hex, 8000 yy hex (yy any):

- ensure that the Control Unit is connected to the Power Module.

A01678 (F)	SI: Test stop for STO via terminals required at the PM
Message class:	Safety monitoring channel has identified an error (10)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time (p9661) set to monitor the forced checking procedure (test stop) for the "STO via the terminals at the Power
	Module" function has been exceeded. A new forced checking procedure is required.
	After the next time the "STO via terminals at the Power Module" function is deselected, the message is withdrawn
and the monitoring time is reset.	
	Note:
	- this message does not result in a safety stop response.
	- the test must be performed within a defined, maximum time interval (p9661, maximum of 9000 hours) in order to
comply with the requirements as laid down in the standards for timely fault detection and the conditions to calculate	
the failure rates of safety functions (PFH value). Operation beyond this maximum time period is permissible if it can	
be ensured that the forced checking procedure is performed before persons enter the hazardous area and who are	
depending on the safety functions correctly functioning.	
Select the "STO via terminals at the Power Module" function and then deselect again.	

A01693 (F)	SI P1 (CU): Safety parameter setting changed, POWER ON required
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Safety parameters have been changed; these will only take effect following a POWER ON.
	Notice:
	All changed parameters of the safety motion monitoring functions will only take effect following a POWER ON.
	Alarm value (r2124, interpret decimal):
Remedy:	- exameter number of the safety parameter which has changed, necessitating a POWER ON.
	- carry out a POWER ON (switch-off/switch-on).

A01698 (F)	SI P1 (CU): Commissioning mode active
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The commissioning of the "Safety Integrated" function is selected.
	This message is withdrawn after the safety functions have been commissioned.
	Note:
	- this message does not result in a safety stop response.
	- in the safety commissioning mode, the "STO" function is internally selected.
	See also: p0010 (Drive commissioning parameter filter)
Remedy:	Not necessary.
A01699 (F)	SI P1 (CU): Test stop for STO required
Message class:	Safety monitoring channel has identified an error (10)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time set in p9659 for the forced checking procedure (test stop) for the "STO" function has been exceeded. A new forced checking procedure is required.
	After the next time the "STO" function is de-selected, the message is withdrawn and the monitoring time is reset.
	Note:
	- this message does not result in a safety stop response.
	- The test must be performed within a defined, maximum time interval (p9659, maximum of 9000 hours) in order to comply with the requirements as laid down in the standards for timely fault detection and the conditions to calculate the failure rates of safety functions (PFH value). Operation beyond this maximum time period is permissible if it can be ensured that the forced checking procedure is performed before persons enter the hazardous area and who are depending on the safety functions correctly functioning.
	See also: p9659 (SI forced checking procedure timer), r9660 (SI forced checking procedure remaining time)
Remedy:	Select STO and then de-select again.
	Note:
	SI: Safety Integrated
	STO: Safe Torque Off
A01788	SI: Automatic test stop waits for STO deselection via motion monitoring functions
Message class:	Safety monitoring channel has identified an error (10)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic test stop (forced checking procedure) was not able to be carried out after powering up.
	Possible causes:
	- the STO function is selected via safe motion monitoring functions.
	- a safety message is present, that resulted in a STO.
	Note:
	STO: Safe Torque Off
Remedy:	- deselect STO via safe motion monitoring functions.
	- remove the cause of the safety messages and acknowledge the messages.
	Note:
	The automatic test stop is performed after removing the cause.
A01790	SI: Power up stopped due to STO via terminals
Message class:	Safety monitoring channel has identified an error (10)
Reaction:	NONE
Acknowledge:	NONE
Cause:	When powering up, the automatic internal self test of the Control Unit was not able to be completed as the pulses were not enabled. It is possible that the "STO via terminals at the Power Module" function is being used, and STO is selected in at least one hardware switch-off signal path at the Power Module.

4.2 List of faults and alarms

Remedy:	- Deselect STO via the STO terminals at the Power Module (connect STO_A and STO_B to 24 V). - if required, deactivate the "STO via terminals at the Power Module" function via the DIP switch (both DIP switches set to "OFF"). Note: - After the cause has been removed, the Control Unit continues to power up. - While the alarm remains, a possibly existing brake is kept closed. STO: Safe Torque Off
A01796 (F, N)	SI P1 (CU): Wait for communication
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive waits for communication to be established to execute the safety-relevant motion monitoring functions. Note: In this state, the pulses are safely suppressed. Alarm value (r2124, interpret decimal): 3: Wait for communication to be established to PROFIsafe F-Host.
Remedy:	If, after a longer period of time, the message is not automatically withdrawn, the following checks have to be made: - check any other PROFIsafe communication messages/signals present and evaluate them. - check the operating state of the F-Host. - check the communication connection to the F Host. See also: p9601 (SI enable functions integrated in the drive (processor 1)), p9801 (SI enable functions integrated in the drive (processor 2))
A01900 (F)	PROFIBUS: Configuration telegram error
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A PROFIBUS master attempts to establish a connection using an incorrect configuring telegram. Alarm value (r2124, interpret decimal): 2: Too many PZD data words for input or output. The number of possible PZD is specified by the number of indices in r2050/p2051. 3: Uneven number of bytes for input or output. 211: Unknown parameterizing block. 501: PROFIsafe parameter error (e.g. F_dest). Additional values: Only for internal Siemens troubleshooting.
Remedy:	Check the bus configuration on the master and the slave sides. For alarm value $=2$: Check the number of data words for input and output. For alarm value $=211$: Ensure offline version <= online version. For alarm value $=501$: Check the set PROFIsafe address (p9610).
F01910 (N, A)	Fieldbus interface setpoint timeout
Message class:	Communication error to the higher-level control system (9)
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The reception of setpoints from the fieldbus interface has been interrupted. - bus connection interrupted. - communication partner switched off. For PROFIBUS: - PROFIBUS master set into the STOP state. See also: p2040 (Fieldbus interface monitoring time), p2047 (PROFIBUS additional monitoring time)

Remedy: \quad Ensure bus connection has been established and switch on communication partner. \begin{tabular}{l}

- if required, adapt p2040.

For PROFIBUS:

- set the PROFIBUS master to the RUN state.

- if the error is repeated, check the set response monitoring in the bus configuration (HW Config).

- slave redundancy: For operation on a Y link, it must be ensured that "DP alarm mode = DPV1" is set in the slave

parameterization.
\end{tabular}

A01920 (F)	PROFIBUS: Interruption cyclic connection
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFIBUS master is interrupted.
Remedy:	Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode.
	Note:
	If there is no communication to a higher-level control system, then p2030 should be set = 0 to suppress this
	message.
	See also: p2030 (Field bus interface protocol selection)

A01945	PROFIBUS: Connection to the Publisher failed
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	For PROFIBUS peer-to-peer data transfer, the connection to at least one Publisher has failed.
	Alarm value (r2124, interpret binary):
	Bit $0=1:$ Publisher with address in r2077[0], connection failed.
	...
	Bit $15=1:$ Publisher with address in r2077[15], connection failed.
Remedy:	Check the PROFIBUS cables.
	See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)

F01946 (A)	PROFIBUS: Connection to the Publisher aborted
Message class:	Communication error to the higher-level control system (9)
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The connection to at least one Publisher for PROFIBUS peer-to-peer data transfer in cyclic operation has been aborted.
	Fault value (r0949, interpret binary):
	Bit $0=1$: Publisher with address in r2077[0], connection aborted.
	\cdots
	Bit 15 = 1: Publisher with address in r2077[15], connection aborted.
Remedy:	- check the PROFIBUS cables.
	- check the state of the Publisher that has the aborted connection.
	See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)

F01951 CU SYNC: Synchronization application clock cycle missing

Message class: Internal (DRIVE-CLiQ) communication error (12)
Reaction: OFF2 (NONE)

Acknowledge: IMMEDIATELY (POWER ON)
Cause: Internal synchronization of the application cycles unsuccessful.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting
Remedy: - carry out a POWER ON (switch-off/switch-on) for all components.

- upgrade the Control Unit software.

A01953	CU SYNC: Synchronization not completed
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Reaction:	NONE
Acknowledge:	NONE
Cause:	After the drive system was switched on, synchronization between the basic clock cycle and application clock cycle was started but was not completed within the selected time tolerance.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON (switch-off/switch-on).
A02050	Trace: Start not possible
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace has already been started.
Remedy:	Stop the trace and, if necessary, start again.
A02051	Trace: recording not possible as a result of know-how protection
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	TRACE recording is not possible as at least one signal or trigger signal being used is under know-how protection. Alarm value (r2124, interpret decimal):
	1: Recorder 0
	2: Recorder 1
	3: Recorders 0 and 1
Remedy:	- Temporarily activate or deactivate know-how protection (p7766).
	- include the signal in the OEM exception list (p7763, p7764).
	- Where relevant do not record the signal.
	See also: p7763 (KHP OEM exception list number of indices for p7764), p7764 (KHP OEM exception list)
A02055	Trace: Recording time too short
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace duration is too short.
	The minimum is twice the value of the trace clock cycle.
Remedy:	Check the selected recording time and, if necessary, adjust.

A02056 Trace: Recording cycle too short

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: NONE

Acknowledge: NONE
Cause: The selected recording clock cycle is lower than the basic clock cycle 500μ s.
Remedy: Increase the value for the trace cycle.

A02057	Trace: Time slice clock cycle invalid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time slice clock cycle selected does not match any of the existing time slices.
Remedy:	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.

A02058	Trace: Time slice clock cycle for endless trace not valid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for the endless trace
Remedy:	Enter the clock cycle of an existing time slice with a cycle time >=2 ms for up to 4 recording channels or $>=4 \mathrm{~ms}$
	from 5 recording channels per trace.
	The existing time slices can be read out via p7901.

A02059	Trace: Time slice clock cycle for 2×8 recording channels not valid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for more than 4 recording channels.
Remedy:	Enter the clock cycle of an existing time slice with a cycle time >= 4 ms or reduce the number of recording channels to 4 per trace.
	The existing time slices can be read out via p7901.

A02060	Trace: Signal to be traced missing
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	- a signal to be traced was not specified. - the specified signals are not valid.
Remedy:	- specify the signal to be traced. - check whether the relevant signal can be traced.

A02061	Trace: Invalid signal
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the specified signal does not exist. - the specified signal can no longer be traced (recorded). Remedy:
	- specify the signal to be traced. - check whether the relevant signal can be traced.

A02062	Trace: Invalid trigger signal
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	- a trigger signal was not specified. - the specified signal does not exist. - the specified signal is not a fixed-point signal. - the specified signal cannot be used as a trigger signal for the trace. Remedy:\quadSpecify a valid trigger signal.

A02063	Trace: Invalid data type
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The specified data type to select a signal using a physical address is invalid.
Remedy:	Use a valid data type.

A02070	Trace: Parameter cannot be changed
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace parameter settings cannot be changed when the trace is active.
Remedy:	- stop the trace before parameterization.
	- if required, start the trace.

A02075	Trace: Pretrigger time too long
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected pretrigger time must be shorter than the trace time.
Remedy:	Check the pretrigger time setting and change if necessary.

F02080	Trace: Parameterization deleted due to unit changeover
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The trace parameterization in the drive unit was deleted due to a unit changeover or a change in the reference Remedy:

A02095	MTrace 0: multiple trace cannot be activated
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 0):
	- measuring function
	- long-time trace
	- trigger condition "immediate recording start" (IMMEDIATE)
	- trigger condition "start with function generator" (FG_START)
	- if required, deactivate the multiple trace (p4840[0] = 0).
Remedy:	- deactivate function or setting that is not permissible

A02096	MTrace 0: cannot be saved
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 0).
	A multiple trace is not started or is canceled.
	Alarm value (r2124, interpret decimal):
	1: Memory card cannot be accessed.
	- card is not inserted or is blocked by a mounted USB drive.
	3: data save operation to slow.
	- a second trace has been completed before the measurement results of the first trace were able to be saved.
	- writing the measurement result files to the card is blocked by the parameter save.
	4: Data save operation canceled.
Remedy:	- for instance, the file required for the data save operation was not able to be found.
	- insert or remove the memory card.
	- use a larger memory card.
	- configure a longer trace time or use an endless trace.
	- avoid saving parameters while a multiple trace is running.
- check whether other functions are presently accessing measurement result files.	

A02097	MTrace 1: multiple trace cannot be activated
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 1):
	- measuring function
	- long-time trace
	- trigger condition "immediate recording start" (IMMEDIATE)
	- trigger condition "start with function generator" (FG_START)
Remedy:	- if required, deactivate the multiple trace (p4840[1] = 0).
	- deactivate function or setting that is not permissible

A02098	MTrace 1: cannot be saved
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 1).
	A multiple trace is not started or is canceled.
	Alarm value (r2124, interpret decimal):
	1: Memory card cannot be accessed.
	- card is not inserted or is blocked by a mounted USB drive.
	3: data save operation to slow.
	- a second trace has been completed before the measurement results of the first trace were able to be saved.
	- writing the measurement result files to the card is blocked by the parameter save.
	4: Data save operation canceled.
Remedy:	- for instance, the file required for the data save operation was not able to be found.
	- insert or remove the memory card.
	- use a larger memory card.
	- configure a longer trace time or use an endless trace.
	- avoid saving parameters while a multiple trace is running.
	- check whether other functions are presently accessing measurement result files.

A02099	Trace: Insufficient Control Unit memory
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory space still available on the Control Unit is no longer sufficient for the trace function.
Remedy:	Reduce the memory required, e.g. as follows:
	- reduce the trace time.
	- increase the trace clock cycle.
	- reduce the number of signals to be traced.

A02150	OA: Application cannot be loaded
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The system was not able to load an OA application.
	Alarm value (r2124, interpret hexadecimal):
	$16:$
	The interface version in the DCB user library is not compatible to the DCC standard library that has been loaded.
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components. \quad- upgrade firmware to later version.

4.2 List of faults and alarms

```
For alarm value = 16:
Load a compatible DCB user library (compatible to the interface of the DCC standard library).
Note:
OA: Open Architecture
DCB: Drive Control Block
DCC: Drive Control Chart
```

F02151 (A)	OA: Internal software error
Message class:	Hardware/software error (1)
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error has occurred within an OA application.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
	- replace the Control Unit.
	Note:
	OA: Open Architecture

F02152 (A)	OA: Insufficient memory
Message class:	Hardware/software error (1)
Reaction:	OFF1
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc.).
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc.).
	- use an additional Control Unit.
	Note:
	OA: Open Architecture

F03000

Message class:
Reaction:
Acknowledge:
Cause:

Remedy:

NVRAM fault on action
Hardware/software error (1)
NONE
IMMEDIATELY
A fault occurred during execution of action p7770 $=1$ or 2 for the NVRAM data.
Fault value (r0949, interpret hexadecimal):
yyxx hex: $y y=$ fault cause, $x x=$ application ID
$y y=1$:
The action $\mathrm{p} 7770=1$ is not supported by this version if Drive Control Chart (DCC) is activated for the drive object concerned.
yy $=2$:
The data length of the specified application is not the same in the NVRAM and the backup.
$y y=3$:
The data checksum in p7774 is not correct.
$y y=4$:
No data available to load.

- Perform the remedy according to the results of the troubleshooting.
- if necessary, start the action again.

F03001	NVRAM checksum incorrect
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A checksum error occurred when evaluating the non-volatile data (NVRAM) on the Control Unit.
	The NVRAM data affected was deleted.
Remedy:	Carry out a POWER ON (switch-off/switch-on) for all components.
F03505 (N, A)	Analog input wire breakage
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The wire-break monitoring for an analog input has responded.
	The input value of the analog input has undershot the threshold value parameterized in p0761[0...3].
	p0756[0]: analog input 0 (only CU240D-2)
	p0756[1]: analog input 1 (only CU240D-2)
	Fault value (r0949, interpret decimal):
	yxxx dec
	y = analog input (0 = analog input 0 (AI 0), 1 = analog input 1 (AI 1))
	xxx = component number (p0151)
	Note:
	For the following analog input type, the wire breakage monitoring is active:
p0756[0..1] = 1 (2 ... 10 V with monitoring)	
	- Check the connection to the signal source for interruptions. Remedy: check the magnitude of the injected current - it is possible that the infed signal is too low.
	Note:
	The input current measured by the analog input can be read in r0752[x].

A03510 (F,N)	Calibration data not plausible
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	During booting, the calibration data for the analog inputs is read and checked with respect to plausibility.
	At least one calibration data point was determined to be invalid.
Remedy:	- switch-off/switch-on the power supply for the Control Unit.
	Note:
	If it reoccurs, then replace the module.
	In principle, operation could continue.
	The analog channel involved possibly does not achieve the specified accuracy.

A05000 (N)	Power unit: Overtemperature heat sink AC inverter
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using
	p0290.
	If the heat sink temperature exceeds the value set in p0292[0], then fault F30004 is output. Remedy:
	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? - has the cooling failed?

A05001 (N)	Power unit: Overtemperature depletion layer chip
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached. Note: - the response is set using p0290. - if the temperature of the barrier layer increases by the value set in p0292[1], then fault F30025 is initiated
Remedy:	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? - has the cooling failed? - pulse frequency too high? See also: r0037 (Power unit temperatures), p0290 (Power unit overload response)

A05002 (N)	Power unit: Air intake overtemperature
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	For chassis power units, the following applies:

 The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is
 \(42{ }^{\circ} \mathrm{C}\) (hysteresis 2 K). The response is set using p0290.
 If the air intake temperature increases by an additional 13 K , then fault F30035 is output.
 Remedy: Check the following:
- is the ambient temperature within the defined limit values?
- has the fan failed? Check the direction of rotation.

A05004 (N)	Power unit: Rectifier overtemperature
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290.
	If the temperature of the rectifier increases by an additional 5 K, then fault F30037 is triggered. Remedy:
	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? - has the fan failed? Check the direction of rotation. - is an arm of the supply (incoming) rectifier defective?

A05006 (N)	Power unit: Overtemperature thermal model
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (blocksize
	power units only).
	Depending on p0290, an appropriate overload response is initiated.
	See also: r0037 (Power unit temperatures)
Remedy:	Not necessary.
	The alarm disappears automatically once the limit value is undershot.
	Note:
	If the alarm does not disappear automatically and the temperature continues to rise, this can result in fault F30024.
	See also: p0290 (Power unit overload response)

A05065 (F, N)	Voltage measured values not plausible
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage measurement does not supply any plausible values and is not used.
	Alarm value (r2124, interpret bitwise binary):
	Bit 1: Phase U
	Bit 2: Phase V
	Bit 3: Phase W
	The following parameterization must be made in order to deactivate the alarm:
Remedy:	- Deactivate voltage measurement (p0247.0 $=0$).
	- Deactivate flying restart with voltage measurement $(p 0247.5=0)$ and deactivate fast flying restart $(p 1780.11=0)$.

F06310 (A)	Supply voltage (p0210) incorrectly parameterized
Message class:	Network fault (2)
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The measured DC voltage lies outside the tolerance range after precharging has been completed.
	Permissible range:
	1.16 * p0210 < r0070 < 1.6 * p0210
	Note:
	The fault can only be acknowledged when the drive is switched off.
	See also: p0210 (Drive unit line supply voltage)
Remedy:	- check the parameterized supply voltage and if required change (p0210).
	- check the line supply voltage.
	See also: p0210 (Drive unit line supply voltage)

A06921 (N)	Braking resistor phase asymmetry
Message class:	Braking Module faulted (14)
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the three resistors of the braking chopper are not symmetrical.
	- DC link voltage oscillations caused by fluctuating loads of the connected drives.
Remedy:	- check the feeder cables to the braking resistors.
	- if required, increase the value for detecting asymmetry (p1364).

F06922	Braking resistor phase failure
Message class:	Braking Module faulted (14)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A phase failure for the brake resistor was detected.
	Fault value (r0949, interpret decimal):
	11: Phase U 12: Phase V
	13: Phase W
Remedy:	Check the feeder cables to the braking resistors.
F07011	Drive: Motor overtemperature
Message class:	Motor overload (8)
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY Cause:
	KTY84/PT1000:
	The motor temperature has exceeded the fault threshold (p0605) or the timer (p0606) after the alarm threshold was exceeded (p0604) has expired. The response parameterized in p0610 becomes active. The alarm is withdrawn if the
response threshold for wire breakage or sensor not connected is exceeded (R > 2120 Ohm).	

4.2 List of faults and alarms

PTC or bimetallic NC contact:
The response threshold of 1650 Ohm was exceeded or the NC contact opened and the timer (p0606) has expired.
The response parameterized in p0610 becomes active.
Possible causes:

- motor is overloaded.
- motor ambient temperature too high.
- wire breakage or sensor not connected.
Fault value (r0949, interpret decimal):
200:
Motor temperature model 1 (I2t): temperature too high.
See also: p0604, p0605, p0606, p0612, p0613, p0625, p0626, p0627, p0628
- reduce the motor load.
- check the ambient temperature and the motor ventilation.
- check the wiring and the connection of the PTC or bimetallic NC contact.
See also: p0604, p0605, p0606, p0612, p0625, p0626, p0627, p0628

A07012 (N)	Drive: Motor temperature model 1/3 overtemperature
Message class:	Motor overload (8)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor temperature model $1 / 3$ identified that the alarm threshold was exceeded.
	Hysteresis:2K.
	Alarm value (r2124, interpret decimal):
	200:
	Motor temperature model 1 (12t): temperature too high.
	300:
	Motor temperature model 3: temperature too high.
	See also: r0034 (Motor utilization thermal), p0605 (Mot_temp_mod 1/2/sensor threshold and temperature value), p0611 (I2t motor model thermal time constant), p0612 (Mot_temp_mod activation), p0613 (Mot_temp_mod 1/3 ambient temperature)
Remedy:	- check the motor load and if required, reduce.
	- check the motor ambient temperature.
	- check activation of the motor temperature model (p0612).
	Motor temperature model 1 (12t):
	- check the thermal time constant (p0611).
	- check alarm threshold.
	Motor temperature model 3:
	- check the motor type.
	- check alarm threshold.
	- check the model parameters.
	See also: r0034 (Motor utilization thermal), p0605 (Mot_temp_mod 1/2/sensor threshold and temperature value), p0611 (I2t motor model thermal time constant), p0612 (Mot_temp_mod activation), r5397 (Mot_temp_mod 3 ambient temperature image p0613)

A07014 (N)	Drive: Motor temperature model configuration alarm
Message class:	Motor overload (8)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A fault has occurred in the configuration of the motor temperature model.
	Alarm value (r2124, interpret decimal):
	$1:$
	All motor temperature models: It is not possible to save the model temperature
	See also: p0610 (Motor overtemperature response)
Remedy:	- set the response for motor overtemperature to "Alarm and fault, no reduction of I_max" (p0610 = 2).
	See also: p0610 (Motor overtemperature response)

A07015	Drive: Motor temperature sensor alarm
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the temperature sensor set in p0601.
	With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015.
	Possible causes:
	- wire breakage or sensor not connected (KTY: $\mathrm{R}>2120$ Ohm, PT1000: $\mathrm{R}>2120$ Ohm).
	- measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm, PT1000: R < 603 Ohm).
Remedy:	- make sure that the sensor is connected correctly.
	- check the parameterization (p0601).
	See also: r0035 (Motor temperature), p0601 (Motor temperature sensor type), p0607 (Temperature sensor fault timer)
F07016	Drive: Motor temperature sensor fault
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when evaluating the temperature sensor set in p0601.
	Possible causes:
	- wire breakage or sensor not connected (KTY: $\mathrm{R}>2120$ Ohm, PT1000: $\mathrm{R}>2120$ Ohm).
	- measured resistance too low (PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm, PT1000: R < 603 Ohm).
	Note:
	If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015.
	See also: p0607 (Temperature sensor fault timer)
Remedy:	- make sure that the sensor is connected correctly.
	- check the parameterization (p0601).
	- induction motors: Deactivate temperature sensor fault (p0607 = 0).
	See also: r0035 (Motor temperature), p0601 (Motor temperature sensor type), p0607 (Temperature sensor fault timer)
F07080	Drive: Incorrect control parameter
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 = L_spread $=0$).
	Fault value (r0949, interpret decimal):
	The fault value includes the parameter number involved.
	See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0357, p0358, p0360, p0640, p1082, p1300
Remedy:	Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit > 0).
	See also: p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0640, p1082
F07082	Macro: Execution not possible
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The macro cannot be executed.
	Fault value (r0949, interpret hexadecimal): ccccbbaa hex:
	$\mathrm{cccc}=$ preliminary parameter number, $\mathrm{bb}=$ supplementary information, $\mathrm{aa}=$ fault cause
	Fault causes for the trigger parameter itself:
	19: Called file is not valid for the trigger parameter.
	20: Called file is not valid for parameter 15.
	21: Called file is not valid for parameter 700.

22: Called file is not valid for parameter 1000.
23: Called file is not valid for parameter 1500.
24: Data type of a TAG is incorrect (e.g. Index, number or bit is not U16).
Fault causes for the parameters to be set:
25: Error level has an undefined value.
26: Mode has an undefined value.
27: A value was entered as string in the tag value that is not "DEFAULT".
31: Entered drive object type unknown.
32: A device was not able to be found for the determined drive object number.
34: A trigger parameter was recursively called.
35: It is not permissible to write to the parameter via macro.
36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect.
37: Source parameter for a BICO interconnection was not able to be determined.
38: An index was set for a non-indexed (or CDS-dependent) parameter.
39: No index was set for an indexed parameter.
41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN.
42: A value not equal to 0 or 1 was set for a BitOperation.
43: Reading the parameter to be changed by the BitOperation was unsuccessful.
51: Factory setting for DEVICE may only be executed on the DEVICE.
61: The setting of a value was unsuccessful.
Remedy: - check the parameter involved.

- check the macro file and BICO interconnection.

See also: p0015 (Macro drive unit), p1000 (Speed setpoint selection)

F07083	Macro: ACX file not found
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The ACX file (macro) to be executed was not able to be found in the appropriate directory.
	Fault value (r0949, interpret decimal):
	Parameter number with which the execution was started. See also: p0015 (Macro drive unit), p1000 (Speed setpoint selection)
Remedy:	- check whether the file is saved in the appropriate directory on the memory card.

F07084	Macro: Condition for WaitUntil not fulfilled
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts.
	Fault value (r0949, interpret decimal):
	Parameter number for which the condition was set.
Remedy:	Check and correct the conditions for the WaitUntil loop.
F07086	Units changeover: Parameter limit violation due to reference value change
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit notation.
	The values of the parameters were set to the corresponding violated minimum limit/maximum limit or to the factory setting.
	Possible causes:
	- the steady-state minimum limit/maximum limit or that defined in the application was violated.

	Fault value (r0949, parameter):
	Diagnostics parameter to display the parameters that were not able to be re-calculated.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	Check the adapted parameter value and if required correct.
F07088	Units changeover: Parameter limit violation due to units changeover
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A changeover of units was initiated. This resulted in a violation of a parameter limit
	Possible causes for the violation of a parameter limit:
	- When rounding off a parameter corresponding to its decimal places, the steady-state minimum limit or maximum limit was violated.
	- inaccuracies for the data type "FloatingPoint".
	In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum limited is violated the parameter value is rounded down.
	Fault value (r0949, interpret decimal):
	Diagnostics parameter to display all parameters whose value had to be adapted.
	See also: p0100 (IEC/NEMA mot stds), p0505 (Selecting the system of units), p0595 (Technological unit selection)
Remedy:	Check the adapted parameter values and if required correct.
A07089	Changing over units: Function module activation is blocked because the units have been changed over
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to activate a function module. This is not permissible if the units have already been changed over.
	See also: p0100 (IEC/NEMA mot stds), p0505 (Selecting the system of units)
Remedy:	Restore units that have been changed over to the factory setting.
A07092	Drive: moment of inertia estimator still not ready
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The moment of inertia estimator still has no valid values.
	The acceleration cannot be calculated.
	The moment of inertia estimator is ready, if the frictional values ($\mathrm{p} 1563, \mathrm{p} 1564$) as well as the moment of inertia value (p 1493) have been determined ($\mathrm{r} 1407.26=1$).
Remedy:	Repeat the operation when the moment of inertia estimator is ready (r1407.26 = 1).
A07094	General parameter limit violation
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	As a result of the violation of a parameter limit, the parameter value was automatically corrected.
	Minimum limit violated --> parameter is set to the minimum value.
	Maximum limit violated --> parameter is set to the maximum value.
	Alarm value (r2124, interpret decimal):
	Parameter number, whose value had to be adapted.
Remedy:	Check the adapted parameter values and if required correct.

A07200	Drive: Master control ON command present
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The ON/OFF1 command is present (no 0 signal).
	The command is either influenced via binector input p0840 (current CDS) or control word bit 0 via the master control.
Remedy:	Switch the signal via binector input p0840 (current CDS) or control word bit 0 via the master control to 0 .
F07220 (N, A)	Drive: Master control by PLC missing
Message class:	Communication error to the higher-level control system (9)
Reaction:	OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The "master control by PLC" signal was missing in operation.
	- interconnection of the binector input for "master control by PLC" is incorrect (p0854).
	- the higher-level control has withdrawn the "master control by PLC" signal.
	- data transfer via the fieldbus (master/drive) was interrupted.
Remedy:	- check the interconnection of the binector input for "master control by PLC" (p0854).
	- check the "master control by PLC" signal and, if required, switch in.
	- check the data transfer via the fieldbus (master/drive).
	Note:
	If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be parameterized to NONE or the message type should be parameterized as alarm.

F07320 Drive: Automatic restart interrupted

Message class: Application/technological function faulted (17)
Reaction: OFF2

Acknowledge: IMMEDIATELY
Cause: - the specified number of restart attempts (p 1211) has been completely used up because within the monitoring time (p 1213) the faults were not able to be acknowledged. The number of restart attempts (p 1211) is decremented at each new start attempt.

- the monitoring time for the power unit has expired.
- when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the drive unit is not automatically powered up again.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: - increase the number of restart attempts (p1211).
- increase the delay time in p1212 and/or the monitoring time in p1213.
- reduce the delay time to reset the start counter $\mathrm{p} 1213[1]$ so that fewer faults are registered in the time interval.

A07321	Drive: Automatic restart active
Message class:	Application/technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic restart (AR) is active. When the line supply returns and/or the causes of the existing faults are removed the drive is automatically restarted. The pulses are enabled and the motor starts to rotate.
	For p1210 $=26$, restarting is realized with the delayed setting of the ON command.
Remedy:	- the automatic restart (AR) should, if required, be inhibited (p1210 = 0).
	- an automatic restart can be directly interrupted by withdrawing the switch-on command (BI: p0840).
	- for p1210 = 26: by withdrawing the OFF2- / OFF3 command.

F07330 Flying restart: Measured search current too low
Message class: Application/technological function faulted (17)
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: During a flying restart, it was identified that the search current reached is too low. It is possible that the motor is not connected.

Remedy:	Check the motor feeder cables.
F07331	Flying restart: Function not supported
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	It is not possible to power up with the motor rotating (no flying restart).
	In the following cases, the "flying restart" function is not supported:
	PMSM: operation with U/f characteristic and sensorless vector control.
	Note:
	PMSM: permanent-magnet synchronous motor
Remedy:	Deactivate the "flying restart" function (p1200 = 0).
F07332	Flying restart: maximum speed reduced
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The maximum speed that can be reached is reduced; at very high speeds problems associated with the flying restart can be encountered.
	Possible causes:
	- power ratio, power unit/motor too high
Remedy:	Parameter changes are not required.
	Note:
	A flying restart at speeds above 3000 rpm should be avoided.
A07352	Drive: Limit switch signals not plausible
Message class:	Application/technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Limit switch signals are not plausible.
	Possible causes:
	- BICO interconnections are not OK (p3342, p3343).
	- sensors are not supplying a valid signal (both supply a 0 signal).
Remedy:	- check the BICO interconnections for the limit switch signals.
	- check the sensors.
	See also: p3342 (Limit switch plus), p3343 (Limit switch minus)
A07400 (N)	Drive: DC link voltage maximum controller active
Message class:	Application/technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated because the upper switch-in threshold has been exceeded (r1242, r1282).
	The ramp-down times are automatically increased in order to maintain the DC link voltage (r0070) within the permissible limits. There is a system deviation between the setpoint and actual speeds.
	When the DC link voltage controller is switched out (disabled), this is the reason that the ramp-function generator output is set to the speed actual value.
	See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller configuration (vector control)), p1280 (Vdc controller configuration (U/f))
Remedy:	If the controller is not to intervene:
	- increase the ramp-down times.
	- switch off the Vdc_max controller (p1240 = 0 for vector control, p1280 = 0 for U/f control).
	If the ramp-down times are not to be changed:
	- use a chopper or regenerative feedback unit.

A07401 (N)	Drive: DC link voltage maximum controller deactivated
Message class:	Application/technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Vdc_max controller can no longer maintain the DC link voltage (r0070) below the limit value (r1242, r1282) and was therefore switched out (disabled). - the line supply voltage is permanently higher than specified for the power unit.
	- the motor is permanently in the regenerative mode as a result of a load that is driving the motor.
Remedy:	- check whether the input voltage is within the permissible range (if required, increase the value in po210). - check whether the load duty cycle and load limits are within the permissible limits.

A07402 (N)	Drive: DC link voltage minimum controller active
Message class:	Application/technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated as the lower switch-in threshold has been undershot (r1246, r1286). The kinetic energy of the motor is used to buffer the DC link. The drive is therefore braked. See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller configuration (vector control)), p1280 (Vdc controller configuration (U/f)) The alarm disappears when power supply returns.

F07404	Drive: DC link voltage monitoring Vdc_max
Message class:	DC link overvoltage (4)
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring of the DC link voltage p1284 has responded (only U/f control). Remedy:
	- check the line supply voltage. - check the braking module. - adapt the device supply voltage (p0210).
	- adapt the DC link voltage monitoring (p1284).

F07405 (N, A)	Drive: Kinetic buffering minimum speed fallen below
Message class:	Application/technological function faulted (17)
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	During kinetic buffering the speed fell below minimum speed (p1257 or p1297 for vector drives with U/f control) and the line supply did not return.
Remedy:	Check the speed threshold for the Vdc_min controller (kinetic buffering) (p1257, p1297). See also: p1257 (Vdc_min controller speed threshold), p1297 (Vdc_min controller speed threshold (U/f))

F07406 (N, A) Drive: Kinetic buffering maximum time exceeded
Message class: Application/technological function faulted (17)
Reaction: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge: IMMEDIATELY
Cause: The maximum buffer time (p1255 and p1295 for vector drives with U/f control) has been exceeded without the line supply having returned.
Remedy: Check the time threshold for Vdc-min controller (kinetic buffering) (p1255, p1295).
See also: p1255 (Vdc_min controller time threshold), p1295 (Vdc_min controller time threshold (U/f))

A07409 (N)	Drive: U/f control, current limiting controller active
Message class:	Application/technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current limiting controller of the U/f control was activated because the current limit was exceeded.
Remedy:	The alarm is automatically withdrawn after one of the following measures:
	- increase current limit (p0640).
	- reduce the load.
	- slow down the ramp up to the setpoint speed.
F07410	Drive: Current controller output limited
Message class:	Application/technological function faulted (17)
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following:
	- motor not connected or motor contactor open.
	- motor data and motor configuration (star-delta) do not match.
	- no DC link voltage present.
- power unit defective.	
- the "flying restart" function is not activated.	
	- connect the motor or check the motor contactor.
- check the motor parameterization and the connection type (star-delta).	
	- check the DC link voltage (r0070).
- check the power unit.	
- activate the "flying restart" function (p1200).	

F07426 (A)	Technology controller actual value limited
Message class:	Application/technological function faulted (17)
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the technology controller, interconnected via connector input p2264, has reached a limit.
	Fault value (r0949, interpret decimal):
	1: upper limit reached.
	2: lower limit reached.
Remedy:	- adapt the limits to the signal level (p2267, p2268).
	- check the actual value normalization (p0595, p0596).
	See also: p0595 (Technological unit selection), p0596 (Technological unit reference quantity), p2264 (Technology controller actual value), p2267 (Technology controller upper limit actual value), p2268 (Technology controller lower limit actual value)

A07428 (N)	Technology controller parameterizing error
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The technology controller has a parameterizing error.
	Alarm value (r2124, interpret decimal):
	1:
	The upper output limit in p2291 is set lower than the lower output limit in p2292.
Remedy:	For alarm value =1:
	Set the output limit in p2291 higher than in p2292.
	See also: p2291 (Technology controller maximum limiting), p2292 (Technology controller minimum limiting)

F07435 (N)	Drive: Setting the ramp-function generator for sensorless vector control
Message class:	Application/technological function faulted (17)
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	During operation with sensorless vector control (r1407.1) the ramp-function generator was stopped (p1141). An internal setting command of the ramp-function generator output caused the set setpoint speed to be frozen.
Remedy:	- deactivate the holding command for the ramp-function generator (p1141). - suppress the fault (p2101, p2119). This is necessary if the ramp-function generator is held using jogging and the speed setpoint is simultaneously inhibited (r0898.6).

A07444	PID autotuning is activated
Message class:	Application/technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Automatic setting of the PID controller parameters (PID autotuning) was activated (p2350).
	See also: p2350 (Enable PID autotuning)
Remedy:	Not necessary.
	This alarm is automatically withdrawn after the PID autotuning has been completed.

F07445	PID autotuning canceled
Message class:	Application/technological function faulted (17)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The PID autotuning was canceled as a result of an error.
Remedy:	- increase the offset.
	- check system configuration.

A07530	Drive: Drive Data Set DDS not present
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected drive data set is not available. The drive data set was not changed over. See also: p0180 (Number of Drive Data Sets (DDS)), p0820 (Drive Data Set selection DDS bit 0), r0837 (Drive Data Semedy: Set DDS selected) - select the existing drive data set. - set up additional drive data sets.

A07531	Drive: Command Data Set CDS not present
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected command data set is not available (p0836 > p0170). The command data set was not changed over. Semedy:\quadSee also: p0810 (Command data set selection CDS bit 0), r0836 (Command Data Set CDS selected) - select the existing command data set. - set up additional command data sets.

F07754 Drive: Incorrect shutoff valve configuration

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)
Cause: An incorrect shutoff valve configuration was detected. Fault value (r0949, interpret decimal):
100:
Enable Safety Integrated (p9601/p9801), but p0218.0 = 0 (shutoff valve not available).

	101:
	The manipulated variable inhibit time is set less than the wait time to evaluate the feedback signal contacts when switching on the shutoff valve ($\mathrm{p} 0230<\mathrm{p} 9625[0] / \mathrm{p} 9825[0]$). $102:$
	The manipulated variable inhibit time is set less than the wait time to evaluate the feedback signal contacts when switching off the shutoff valve (p 0230 < p9625[1]/p9825[1]).
Remedy:	For fault value = 100:
	Check the enable of Safety Integrated and the shutoff valve (p9601/p9801, p0218.0).
	For fault value = 101:
	Set the manipulated variable inhibit time higher than the wait time to evaluate the feedback signal contacts when switching on the shutoff valve ($\mathrm{p} 0230>\mathrm{p} 9625[0] / \mathrm{p} 9825[0]$).
	For fault value = 102:
	Set the manipulated variable inhibit time higher than the wait time to evaluate the feedback signal contacts when switching off the shutoff valve ($\mathrm{p} 0230>\mathrm{p} 9625[1] / \mathrm{p} 9825[1]$).
	See also: p0230 (Drive filter type motor side)
F07800	Drive: No power unit present
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The power unit parameters cannot be read or no parameters are stored in the power unit.
	Note:
	This fault also occurs if an incorrect topology was selected in the commissioning software and this parameterization is then downloaded to the Control Unit.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check the power unit and replace if necessary.
	- check the Control Unit, and if required replace it.
	- after correcting the topology, the parameters must be again downloaded using the commissioning software.
F07801	Drive: Motor overcurrent
Message class:	Motor overload (8)
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The permissible motor limit current was exceeded.
	- effective current limit set too low.
	- current controller not correctly set.
	- U/f operation: Up ramp was set too short or the load is too high.
	- U/f operation: Short-circuit in the motor cable or ground fault.
	- U/f operation: Motor current does not match current of power unit.
	- Switch to rotating motor without flying restart function (p1200).
	Note:
	Limit current $=2 \times$ minimum (p0640, $4 \times \mathrm{p} 0305 \times \mathrm{p} 0306)>=2 \times \mathrm{p} 0305 \times \mathrm{p} 0306$
Remedy:	- check the current limits (p0640).
	- U/f control: Check the current limiting controller (p1340 ... p1346).
	- increase the up ramp (p1120) or reduce the load.
	- check the motor and motor cables for short-circuit and ground fault.
	- check the motor for the star-delta configuration and rating plate parameterization.
	- check the power unit and motor combination.
	- Choose "flying restart" function (p1200) if switched to rotating motor.

F07802	Drive: Infeed or power unit not ready
Message class:	Infeed faulted (13)
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	After an internal switch-on command, the infeed or drive does not signal ready.
	- monitoring time is too short.
	- DC link voltage is not present.
	- associated infeed or drive of the signaling component is defective.
	- supply voltage incorrectly set.
	- ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed.
	- replace the associated infeed or drive of the signaling component.
Remedy:	- check the line supply voltage setting (p0210).
	See also: p0857 (Power unit monitoring time)

F07810	Drive: Power unit EEPROM without rated data
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	No rated data are stored in the power unit EEPROM.
	See also: p0205 (Power unit application), r0206 (Rated power unit power), r0207 (Rated power unit current), r0208 (Rated power unit line supply voltage), r0209 (Power unit maximum current)
Remedy:	Replace the power unit or inform Siemens Customer Service.

A07850 (F)	External alarm 1
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 1" is satisfied.
	Note:
	The "External alarm 1" is initiated by a 1/0 edge via binector input p2112.
	See also: p2112 (External alarm 1)
Remedy:	Eliminate the causes of this alarm.

F07860 (A)	External fault 1
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 1" is satisfied.
	Note: The "External fault 1" is initiated by a 1/0 edge via binector input p2106. See also: p2106 (External fault 1) Remedy: - eliminate the causes of this fault. - acknowledge fault.

A07891 Drive: Load monitoring pump/fan blocked
Message class: Motor overload (8)
Reaction: NONE
Acknowledge: NONE
Cause: \quad The load monitoring is configured for a pump or fan (p2193 = 4, 5).

The monitoring function detects when the pump/fan is blocked It is possible that the blocking torque threshold (p2168) is set too low (e.g. heavy duty starting).

See also: p2165 (Load monitoring stall monitoring upper threshold), p2168 (Load monitoring stall monitoring torque threshold)
Remedy: - check whether the pump/fan is blocked, and if blocked, then resolve the problem.

- check that the fan can freely move, and if necessary, resolve the problem.
- adapt the parameterization corresponding to the load (p2165, p2168).

A07892	Drive: Load monitoring pump/fan no load condition
Message class:	Application/technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The load monitoring is configured for a pump or fan (p2193 = 4, 5).
	The monitoring function detects when the pump/fan is operating under no load conditions.
	The pump is running in the dry state (no medium to be pumped) - or the fan has a broken belt.
	It is possible that the detection torque threshold is too low (p2191). Seme also: p2191 (Load monitoring torque threshold no load)
	- for a pump, check the medium being pumped, and if required, provide the medium. - for a fan, check the belt, and if required, replace. - if necessary, increase the detection torque threshold (p2191).

A07893	Drive: Load monitoring pump leakage
Message class:	Application/technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The load monitoring is configured for a pump (p2193 = 4). The monitoring function detects a leak in the pump circuit.
	In this case, the pump requires a torque that is lower than in normal operation to pump the reduced quantity. Remedy:
	- remove the leak in the pump circuit. - for a nuisance trip, reduce the torque thresholds of the leakage characteristic (p2186, p2188, p2190).

F07894	Drive: Load monitoring pump/fan blocked
Message class:	Motor overload (8)
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The load monitoring is configured for a pump or fan (p2193 = 4, 5). The monitoring function detects when the pump/fan is blocked. It is possible that the blocking torque threshold (p2168) is set too low (e.g. heavy duty starting). See also: p2165 (Load monitoring stall monitoring upper threshold), p2168 (Load monitoring stall monitoring torque threshold)
- check whether the pump/fan is blocked, and if blocked, then resolve the problem.	
Remedy:	- check that the fan can freely move, and if necessary, resolve the problem. - adapt the parameterization corresponding to the load (p2165, p2168)..

F07895 Drive: Load monitoring pump/fan no load condition

Message class: Application/technological function faulted (17)
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause: \quad The load monitoring is configured for a pump or fan (p2193 = 4, 5).
The monitoring function detects when the pump/fan is operating under no load conditions.
The pump is running in the dry state (no medium to be pumped) - or the fan has a broken belt.
It is possible that the detection torque threshold is too low (p2191).
See also: p2191 (Load monitoring torque threshold no load)
Remedy: - for a pump, check the medium being pumped, and if required, provide the medium.

- for a fan, check the belt, and if required, replace.
- if necessary, increase the detection torque threshold (p2191).

F07896	Drive: Load monitoring pump leakage
Message class:	Application/technological function faulted (17)
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The load monitoring is configured for a pump (p2193 = 4).
	The monitoring function detects a leak in the pump circuit. In this case, the pump requires a torque that is lower than in normal operation to pump the reduced quantity.
Remedy:	- remove the leak in the pump circuit. - for a nuisance trip, reduce the torque thresholds of the leakage characteristic (p2186, p2188, p2190).

F07900 (N, A) Drive: Motor blocked

Message class: Application/technological function faulted (17)
Reaction: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge: IMMEDIATELY
Cause: \quad Motor has been operating at the torque limit at a low speed for a longer period of time and below the set speed threshold.
This signal can also be triggered if the speed is oscillating and the speed controller output repeatedly goes to its limit. It may also be the case that thermal monitoring of the power unit reduces the current limit (see p0290), thereby causing the motor to decelerate.
Remedy: \quad - check that the motor can freely move. \quad - check the effective torque limit (r1538, r1539).
F07901 Drive: Motor overspeed

Message class: Application/technological function faulted (17)
Reaction: OFF2 (IASC/DCBRK)

Acknowledge: IMMEDIATELY

Cause: The maximum permissible speed was either positively or negatively exceeded.
The maximum permissible positive speed is formed as follows: Minimum (p1082)
The maximum permissible negative speed is formed as follows: Maximum (-p1082)
Remedy: The following applies for a positive direction of rotation:

- check r1084 and if required, correct p1082.

The following applies for a negative direction of rotation:

- check r1087 and if required, correct p1082.

Activate pre-control of the speed limiting controller (bit $7=1$).
Increase the hysteresis for the overspeed signal. This upper limit is dependent upon the maximum motor speed p0322 and the maximum speed p1082 of the setpoint channel.

F07902 (N, A) Drive: Motor stalled

Message class: Application/technological function faulted (17)

Cause: The system has identified that the motor has stalled for a time longer than is set.
Fault value (r0949, interpret decimal):
1: Reserved.
2: Stall detection using r1408.12 (p1745) or via (r0084 ... r0083).
Remedy: Steps should always be taken to ensure that both motor data identification and the rotating measurement were carried out (see p1900, r3925).

- check whether the drive stalls solely due to the load in controlled mode or when the speed setpoint is still zero. If yes, then increase the current setpoint using p1610.
- if the motor excitation time (p 0346) was significantly reduced and the drive stalls when it is switched on and run immediately, p0346 should be increased again.
- check whether the motor cables are disconnected (see A07929).

If there is no fault, then the fault tolerance can be increased (p 1745).

- check the current limits (p0640, r0067, r0289). If the current limits are too low, then the drive cannot be magnetized
- If the fault occurs with fault value 2 when the motor accelerates very quickly to the field weakening range, the deviation between the flux setpoint and flux actual value can be reduced and, in turn, the message prevented, by reducing p1553.

A07910 (N)	Drive: Motor overtemperature
Message class:	Motor overload (8)
Reaction:	NONE
Acknowledge:	NONE
Cause:	KTY84/PT1000 or no sensor:

The measured motor temperature or the temperature of the motor temperature model 2 has exceeded the alarm threshold (p0604). The response parameterized in p0610 becomes active.
PTC or bimetallic NC contact:
The response threshold of 1650 Ohm was exceeded or the NC contact opened.
Alarm value (r2124, interpret decimal):
11: No output current reduction.
12: Output current reduction active.
See also: p0604 (Mot_temp_mod 2/sensor alarm threshold), p0610 (Motor overtemperature response)

4.2 List of faults and alarms

Remedy: \quad - check the motor load. \quad - check the motor ambient temperature.

A07927

Message class:
Reaction:
Acknowledge:
Cause: The motor is braked with DC current. DC braking is active.
1)

A message with response DCBRK is active. The motor is braked with the braking current set in p1232 for the duration set in in p1233. If the standstill threshold is fallen below, then braking is prematurely canceled.
2)

DC braking has been activated at binector input p1230 with the DC braking set ($p 1230=4$). Braking current p1232 is injected until this binector input becomes inactive.
Remedy: Not necessary.
The alarm automatically disappears once DC braking has been executed.

A07929 (F)	Drive: No motor detected
Message class:	Application/technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute current value is so small after enabling the inverter pulses that no motor is detected.
	Note:
	- in the case of vector control and an induction motor, this alarm is followed by fault F07902.
Remedy:	- check the motor feeder cables.
	- check the voltage boost of the U/f control (p1310).
	- carry out a standstill measurement to set the stator resistance (p0350).

F07950 (A)	Motor parameter incorrect
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The motor parameters were incorrectly entered while commissioning (e.g. p0300 = 0, no motor)
	Fault value (r0949, interpret decimal):
	Parameter number involved.
	See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0316, p0320, p0322, p0323
Remedy:	Compare the motor data with the rating plate data and if required, correct.

A07960	Drive: Incorrect friction characteristic
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The friction characteristic is incorrect.
	Alarm value (r2124, interpret decimal):
	1538:
	The friction torque is greater than the maximum from the upper effective torque limit (p1538) and zero. This is the
	reason that the output of the friction characteristic (r3841) is limited to this value.
	1539:
	The friction torque is less than the minimum from the lower effective torque limit (p1539) and zero. This is the reason
that the output of the friction characteristic (r3841) is limited to this value.	

3820 ... 3829:
Incorrect parameter number. The speeds entered in the parameters for the friction characteristic do not correspond to the following condition:
$0.0<$ p3820 < p3821 < .. < p3829 < p 0322 or p1082, if p0322 $=0$
Therefore the output of the friction characteristic (r3841) is set to zero.
3830 ... 3839:
Incorrect parameter number. The torques entered in the parameters for the friction characteristic do not correspond to the following condition:
$0<=$ p3830, p3831 ... p3839 <= p0333
Therefore the output of the friction characteristic (r3841) is set to zero.
See also: r3840 (Friction characteristic status word)
Remedy: Fulfill the conditions for the friction characteristic.
For alarm value = 1538:
Check the upper effective torque limit (e.g. in the field weakening range).
For alarm value = 1539:
Check the lower effective torque limit (e.g. in the field weakening range).
For alarm value = 3820 ... 3839:
Fulfill the conditions to set the parameters of the friction characteristic.
If the motor data (e.g. the maximum speed p0322) are changed during commissioning ($\mathrm{p} 0010=1,3$), then the technological limits and threshold values, dependent on this, must be re-calculated by selecting p0340=5).

A07961 Drive: Friction characteristic record activated

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: NONE

Acknowledge: NONE
Cause: The automatic friction characteristic record is activated.
The friction characteristic is recorded at the next switch-on command. When plotting the friction characteristic, it is not possible to save the parameters (p0971, p0977).
Remedy: Not necessary.
The alarm disappears automatically after the friction characteristic record has been successfully completed or the record is deactivated (p3845 = 0).

F07963	Drive: Friction characteristic record interrupted
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The conditions to record the friction characteristic are not fulfilled.
	Fault value (r0949, interpret decimal):
	0046: Missing enable signals (r0046).
	1082: The highest speed value to be approached (p3829) is greater than the maximum speed (p1082).
	1084: The highest speed value to be approached (p3829) is greater than the maximum speed (r1084, p1083, p1085).
	1087: The highest speed value to be approached (p3829) is greater than the maximum speed (r1087, p1086, p1088).
	1110: Friction characteristic record, negative direction selected (p3845) and negative direction inhibited (p1110).
	1111: Friction characteristic record, positive direction selected (p3845) and positive direction inhibited (p1111).
	1198: Friction characteristic record selected (p3845 > 0) and negative (p1110) and positive directions (p1111)
inhibited (r1198).	
	1300: The control mode (p1300) has not been set to closed-loop speed control.
	1755: For encoderless closed-loop control (p1300 = 20), the lowest speed value to be approached (p3820) is less
than or equal to the changeover speed, open-loop controlled operation (p 1755).	
	1910: Motor data identification activated.
	1960: Speed controller optimization activated.
3820 ... 3829: speed (p382x) cannot be approached.	
3840: Friction characteristic incorrect.	
3845: Friction characteristic record de-selected.	

4.2 List of faults and alarms

Remedy:	Fulfill the conditions to record the friction characteristic.
	For fault value $=0046$:
	- establish missing enable signals.
	For fault value = 1082, 1084, 1087:
	- Select the highest speed value to be approached (p 3829) less than or equal to the maximum speed ($\mathrm{p} 1082, \mathrm{r} 1084$, r1087).
	- Re-calculate the speed points along the friction characteristic (p0340 = 5).
	For fault value = 1110:
	- Select the friction characteristic record, positive direction (p3845).
	For fault value = 1111:
	- Select the friction characteristic record, negative direction (p3845).
	For fault value = 1198:
	- Enable the permitted direction (p1110, p1111, r1198).
	For fault value = 1300:
	- set the control mode (p1300) on the closed-loop speed control (p1300 = 20, 21).
	For fault value = 1755:
	- For encoderless closed-loop speed control $(\mathrm{p} 1300=20)$ select the lowest speed value to be approached $(\mathrm{p} 3820)$ greater than the changeover speed of open-loop controlled operation (p 1755).
	- Re-calculate the speed points along the friction characteristic (p0340 = 5).
	For fault value = 1910:
	- Exit the motor data identification routine (p1910).
	For fault value = 1960:
	- Exit the speed controller optimization routine (p1960).
	For fault value 3820 ... 3829:
	- check the load at speed p382x.
	- check the speed signal (r0063) for oscillation at speed p382x. Check the settings of the speed controller if applicable.
	For fault value = 3840:
	- Make the friction characteristic error-free (p3820 ... p3829, p3830 ... p3839, p3840).
	For fault value = 3845:
	- Activate the friction characteristic record (p3845).
F07967	Drive: Incorrect pole position identification
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the pole position identification routine.
	Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON.
F07968	Drive: Lq-Ld measurement incorrect
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the Lq-Ld measurement.
	Fault value (r0949, interpret decimal):
	10: Stage 1: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
Remedy:	For fault value = 10:
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	Deactivate technique (p1909).

For fault value $=12$:
Check whether motor data have been correctly entered.
Deactivate technique (p1909).
For fault value = 16:
Deactivate technique (p1909).
For fault value $=17$:
Repeat technique.

F07969
Message class:
Reaction:
Acknowledge:
Cause:

Remedy:

Drive: Incorrect pole position identification

Error in the parameterization / configuration / commissioning procedure (18)
OFF2
IMMEDIATELY
A fault has occurred during the pole position identification routine.
Fault value (r0949, interpret decimal):
1: Current controller limited
2: Motor shaft locked.
10: Stage 1: The ratio between the measured current and zero current is too low.
11: Stage 2: The ratio between the measured current and zero current is too low.
12: Stage 1: The maximum current was exceeded.
13: Stage 2: The maximum current was exceeded.
14: Current difference to determine the $+d$ axis too low.
15: Second harmonic too low.
16: Drive converter too small for the measuring technique.
17: Abort due to pulse inhibit.
18: First harmonic too low.
20: Pole position identification requested with the motor shaft rotating and activated "flying restart" function.

Check whether the motor is correctly connected.
Check whether motor data have been correctly entered.
Replace the power unit involved.
For fault value = 2:
Bring the motor into a no-load condition.
For fault value $=10$:
When selecting p1980 = 4: Increase the value for p0325.
When selecting p1980 = 1: Increase the value for p0329.
Check whether the motor is correctly connected.
Replace the power unit involved.
For fault value $=11$:
Increase the value for 00329 .
Check whether the motor is correctly connected.
Replace the power unit involved.
For fault value $=12$:
When selecting p1980 = 4: Reduce the value for p 0325 .
When selecting p1980 = 1: Reduce the value for p0329.
Check whether motor data have been correctly entered.
For fault value $=13$:
Reduce the value for p0329.
Check whether motor data have been correctly entered.
For fault value $=14$:
Increase the value for p0329.
For fault value $=15$:
Increase the value for p0325.
Motor not sufficiently anisotropic, change the technique (p1980 = 1, 10).
For fault value =16:
Change the technique (p 1980).

For fault value = 17 :
Repeat technique.
For fault value =18:
Increase the value for p0329 (if required, first set p0323).
Saturation not sufficient, change the technique ($\mathrm{p} 1980=10$).
For fault value $=20$
Before carrying out a pole position identification routine ensure that the motor shaft is absolutely stationary (zero speed).

A07980	Drive: Rotating measurement activated
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement (automatic speed controller optimization) is activated.
	The rotating measurement is carried out at the next switch-on command.
	Note:
	During the rotating measurement it is not possible to save the parameters (p0971).
	See also: p1960 (Rotating measurement selection)
Remedy:	Not necessary.
	The alarm disappears automatically after the speed controller optimization has been successfully completed or for the setting p1900 $=0$.

A07981	Drive: Enable signals for the rotating measurement missing
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement cannot be started due to missing enable signals.
	For p1959.13 = 1, the following applies:
	Enable signals for the ramp-function generator missing (see p1140 ... p1142).
Remedy:	- acknowledge faults that are present.
	- establish missing enable signals.
	See also: r0002 (Drive operating display), r0046 (Missing enable signal)

F07983	Drive: Rotating measurement saturation characteristic
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred while determining the saturation characteristic.
	Fault value (r0949, interpret decimal):
	1: The speed did not reach a steady-state condition.
	2: The rotor flux did not reach a steady-state condition.
	3: The adaptation circuit did not reach a steady-state condition.
	4: The adaptation circuit was not enabled.
	5: Field weakening active.
	6: The speed setpoint was not able to be approached as the minimum limiting is active.
	7: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	8: The speed setpoint was not able to be approached as the maximum limiting is active.
	9: Several values of the determined saturation characteristic are not plausible.
	10: Saturation characteristic could not be sensibly determined because load torque too high.
Remedy:	For fault value $=1:$
	- the total drive moment of inertia is far higher than that of the motor (p0341, p0342).
	De-select rotating measurement (p1960), enter the moment of inertia p0342, re-calculate the speed controller p0340
	$=4$ and repeat the measurement.
	For fault value $=1 \ldots 2:$
	- increase the measuring speed (p1961) and repeat the measurement.

For fault value = $1 \ldots 4$:

- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3 .
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < 25%).

For fault value $=5$:

- the speed setpoint (p1961) is too high. Reduce the speed.

For fault value $=6$:

- adapt the speed setpoint (p1961) or minimum limiting (p1080).

For fault value $=7$:

- adapt the speed setpoint (p1961) or suppression (skip) bandwidths (p1091 ... p1092, p1101).

For fault value $=8$:

- adapt the speed setpoint (p1961) or maximum limit (p1082, p1083 and p1086).

For fault value $=9,10$:

- the measurement was carried out at an operating point where the load torque is too high. Select a more suitable operating point, either by changing the speed setpoint (p1961) or by reducing the load torque. The load torque may not be varied while making measurements.
Note:
The saturation characteristic identification routine can be disabled using p1959.1.
See also: p1959 (Rotating measurement configuration)

F07984
Message class
Reaction:
Acknowledge:
Cause:

Drive: Speed controller optimization, moment of inertia

Error in the parameterization / configuration / commissioning procedure (18)
OFF1 (NONE, OFF2)
IMMEDIATELY
A fault has occurred while identifying the moment of inertia. Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The speed setpoint was not able to be approached as the minimum limiting is active.
3. The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
4. The speed setpoint was not able to be approached as the maximum limiting is active.

5: It is not possible to increase the speed by 10% as the minimum limiting is active.
6: It is not possible to increase the speed by 10% as the suppression (skip) bandwidth is active.
7: It is not possible to increase the speed by 10% as the maximum limiting is active.
8: The torque difference after the speed setpoint step is too low in order to be able to still reliably identify the moment of inertia.
9: Too few data to be able to reliably identify the moment of inertia.
10: After the setpoint step, the speed either changed too little or in the incorrect direction.
11: The identified moment of inertia is not plausible. The measured moment of inertia is less than the 0.1 x or greater than $500 x$ the preset moment of inertia of the motor p0341.
Remedy:
For fault value $=1$:

- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < 25%).

For fault value $=2,5$:

- adapt the speed setpoint (p 1965) or adapt the minimum limit (p1080).

For fault value $=3,6$:

- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).

For fault value $=4,7$:

- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).

For fault value $=8$:

- the total drive moment of inertia is far higher than that of the motor (refer to p0341, p0342). De-select rotating measurement ($p 1960$), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement.

4.2 List of faults and alarms

For fault value $=9$:

- check the moment of inertia (p0341, p0342). After the change, re-calculate (p0340 = 3 or 4).

For fault value $=10$:

- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3 .

For fault value = 11:

- reduce the moment of inertia of the motor p0341 (e.g. factor of 0.2) or increase (e.g. factor of 5) and repeat the measurement

Note:
The moment of inertia identification routine can be disabled using p1959.2.
See also: p1959 (Rotating measurement configuration)

F07985	Drive: Speed controller optimization (oscillation test)
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the vibration test.
	Fault value (r0949, interpret decimal):
	1: The speed did not reach a steady-state condition.
	2: The speed setpoint was not able to be approached as the minimum limiting is active.
	3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	4: The speed setpoint was not able to be approached as the maximum limiting is active.
	5: Torque limits too low for a torque step.
	6: No suitable speed controller setting was found.
Remedy:	For fault value = 1 :
	- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967<25\%).
	For fault value $=2$:
	- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	For fault value $=3$:
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1092, p1101).
	For fault value $=4$:
	- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
	For fault value $=5$:
	- increase the torque limits (e.g. p1520, p1521).
	For fault value $=6$:
	- reduce the dynamic factor (p1967).
	- disable the vibration test (p1959.4 $=0$) and repeat the rotating measurement.
	See also: p1959 (Rotating measurement configuration)

F07986	Drive: Rotating measurement ramp-function generator
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	During the rotating measurements, problems with the ramp-function generator occurred.
	Fault value (r0949, interpret decimal):
	1: The positive and negative directions are inhibited.
Remedy:	For fault value $=1:$
	Enable the direction (p1110 or p1111).

F07988	Drive: Rotating measurement, no configuration selected
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	When configuring the rotating measurement (p1959), no function was selected.
Remedy:	Select at least one function for automatic optimization of the speed controller (p1959).
	See also: p1959 (Rotating measurement configuration)
F07990	Drive: Incorrect motor data identification
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the identification routine.
	Fault value (r0949, interpret decimal):
	1: Current limit value reached.
	2: Identified stator resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn .
	3: Identified rotor resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn .
	4: identified stator reactance lies outside the expected range $50 \ldots 500 \%$ of Zn .
	5: identified magnetizing reactance lies outside the expected range $50 \ldots 500 \%$ of Zn .
	6: Identified rotor time constant lies outside the expected range $10 \mathrm{~ms} . . .5 \mathrm{~s}$.
	7: identified total leakage reactance lies outside the expected range $4 \ldots 50 \%$ of Zn .
	8: Identified stator leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn .
	9: Identified rotor leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn .
	10: Motor has been incorrectly connected.
	11: Motor shaft rotates.
	12: Ground fault detected.
	15: Pulse inhibit occurred during motor data identification.
	20: Identified threshold voltage of the semiconductor devices lies outside the expected range $0 \ldots 10 \mathrm{~V}$.
	30: Current controller in voltage limiting.
	40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies. Note:
	Percentage values are referred to the rated motor impedance:
	$\mathrm{Zn}=$ Vmot.nom / sqrt(3) / Imot,nom
Remedy:	For fault value = $1 . . .40$:
	- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
	- is there an appropriate relationship between the motor power rating and that of the power unit? The ratio of the power unit to the rated motor current should not be less than 0.5 and not be greater than 4 .
	- check connection type (star-delta).
	For fault value $=4,7$:
	- check whether the inductance in p0233 is correctly set.
	- check whether motor has been correctly connected (star-delta).
	For fault value $=11$ in addition:
	- deactivate oscillation monitoring (p1909.7 = 1).
	For fault value $=12$:
	- check the power cable connections.
	- check the motor.
	- check the CT.

A07991 (N)	Drive: Motor data identification activated
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data identification routine is activated. The motor data identification routine is carried out at the next switch-on command Once motor data identification has been completed or deactivated, the option to save the parame parameter assignment will be made available again. See also: p1910 (Motor data identification selection)
Remedy:	Not necessary. The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1900 $=0$.

A07994 (F, N)	Drive: motor data identification not performed
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "vector control" mode has been selected and a motor data identification has still not been performed.
	The alarm is initiated when changing the drive data set (see r0051) in the following cases:
	- vector control is parameterized in the actual drive data set (p1300 >= 20).
	and
	- motor data identification has still not been performed in the actual drive data set (see r3925).
	Note:
	For SINAMICS G120, a check is made and an alarm is output also when exiting commissioning and when the system powers up.
Remedy:	- Perform motor data identification (see p1900).
	- if required, parameterize "U/f control" (p1300<20) or set p0096-0 (only G120).
	- switch over to a drive data set, in which the conditions do not apply.

F08010 (N, A) CU: Analog-to-digital converter
Message class: Hardware/software error (1)
Reaction: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The analog-to-digital converter on the Control Unit has not supplied any converted data.
Remedy: - check the power supply.
- replace Control Unit.

F08501 (N, A)	PROFINET: Setpoint timeout
Message class:	Communication error to the higher-level control system (9)
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The reception of setpoints from PROFINET has been interrupted. - bus connection interrupted. - - controller switched off.
- controller set into the STOP state.	
Remedy:	- Restore the bus connection and set the controller to RUN. - if the error is repeated, check the update time set in the bus configuration (HW Config).

F08502 (A) PROFINET: Monitoring time sign-of-life expired

Message class: Communication error to the higher-level control system (9)
Reaction: OFF1 (OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: The monitoring time for the sign-of-life counter has expired.
The connection to the PROFINET interface was interrupted.

Remedy: - carry out a POWER ON (switch-off/switch-on)
 - contact Technical Support.

A08511 (F)	PROFINET: Receive configuration data invalid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive unit did not accept the receive configuration data.
	Alarm value (r2124, interpret decimal):
	Return value of the receive configuration data check.
	2: Too many PZD data words for output or input to a drive object. Maximum of 12 words are possible.
	3: Uneven number of bytes for input or output.
	501: PROFIsafe parameter error (e.g. F_dest).
Remedy:	Check the receive configuration data.
	For alarm value = 2:
	- Check the number of data words for output and input to a drive object.
	For alarm value = 501:
	- check the set PROFIsafe address (p9610).

A08526 (F)	PROFINET: No cyclic connection
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no connection to a PROFINET controller.
Remedy:	Establish the cyclic connection and activate the controller with cyclic operation.
	Check the parameters "Name of Station" and "IP of Station" (r61000, r61001).

A08564	PN/COMM BOARD: syntax error in the configuration file
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A syntax error has been detected in the ASCI configuration file for the Communication Board Ethernet. The saved
configuration file has not been loaded.	
Remedy:	- correct the PROFINET interface configuration (p8920 and following) and activate (p8925 = 2).
	- reinitialize the station (e.g. using the STARTER commissioning software)
	Note:
	The configuration is not applied until the next POWER ON!
	See also: p8925 (Activate PN interface configuration)

A08565

PROFINET: Consistency error affecting adjustable parameters

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: NONE

Acknowledge: NONE

Cause: A consistency error was detected when activating the configuration (p8925) for the PROFINET interface. The currently set configuration has not been activated
Alarm value (r2124, interpret decimal):
0 : general consistency error
1: error in the IP configuration (IP address, subnet mask or standard gateway)
2: Error in the station names.
3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
4: a cyclic PROFINET connection is not possible as DHCP is activated.
See also: p8920 (PN Name of Station), p8921 (PN IP address), p8922 (PN Default Gateway), p8923 (PN Subnet Mask)

4.2 List of faults and alarms

Remedy:	- check the required interface configuration (p8920 and following), correct if necessary, and activate (p8925).
or	
- reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software).	
See also: p8925 (Activate PN interface configuration)	

F08700 (A)	CAN: Communications error
Message class:	Communication error to the higher-level control system (9)
Reaction:	OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A CAN communications error has occurred.
	Fault value (r0949, interpret decimal):
	1: The error counter for the send telegrams has exceeded the BUS OFF value 255. The bus disables the CAN
	controller.
	- bus cable short circuit.
	- incorrect baud rate.
	- incorrect bit timing.
	2: The master no longer interrogated the CAN node status longer than for its "life time". The "life time" is obtained
from the "guard time" (p8604[0]) multiplied by the "life time factor" (p8604[1]).	
	- bus cable interrupted.
	- bus cable not connected.
	- incorrect baud rate.
	- incorrect bit timing.
	- master fault.
	Note:
	The fault response can be set as required using p8641.
	See also: p8604 (CAN life guarding), p8641 (CAN Abort Connection Option Code)
- check the bus cable	
- check the baud rate (p8622).	
	- check the bit timing (p8623).
- check the master.	
The CAN controller must be manually restarted with p8608 = 1 after the cause of the fault has been resolved!	
See also: p8608 (CAN Clear Bus Off Error), p8622 (CAN bit rate), p8623 (CAN Bit Timing selection)	

F08701

Message class: Communication error to the higher-level control system (9)
Reaction: OFF3

Acknowledge: IMMEDIATELY
Cause: A CANopen NMT state transition from "operational" to "pre-operational" or after "stopped".
Fault value (r0949, interpret decimal):
1: CANopen NMT state transition from "operational" to "pre-operational".
2: CANopen NMT state transition from "operational" to "stopped".
Note:
In the NMT state "pre-operational", process data cannot be transferred and in the NMT state "stopped", no process data and no service data can be transferred.
Remedy:
Not necessary.
Acknowledge the fault and continue operation.

F08702 (A) CAN: RPDO Timeout

Message class: Communication error to the higher-level control system (9)
Reaction: OFF3 (NONE, OFF1, OFF2)
Acknowledge:
Cause:
IMMEDIATELY

The monitoring time of the CANopen RPDO telegram has expired because the bus connection was either interrupted or the CANopen Master was switched-off.
See also: p8699 (CAN: RPDO monitoring time)

Remedy:	- check the bus cable
	- check the master.
- If required, increase the monitoring time (p8699).	
A08751 (N)	CAN: Telegram loss
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The CAN controller has lost a receive message (telegram).
Remedy:	Reduce the cycle times of the receive messages.
A08752	CAN: Error counter for error passive exceeded
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error counter for the send or receive telegrams has exceeded the value 127.
Remedy:	- check the bus cable
	- set a higher baud rate (p8622).
	- check the bit timing and if required optimize (p8623).
	See also: p8622 (CAN bit rate), p8623 (CAN Bit Timing selection)

A08753	CAN: Message buffer overflow
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A message buffer overflow.
	Alarm value (r2124, interpret decimal):
	1: Non-cyclic send buffer (SDO response buffer) overflow.
	2: Non-cyclic receive buffer (SDO receive buffer) overflow.
Remedy:	3: Cyclic send buffer (PDO send buffer) overflow.
	- check the bus cable.
	- set a higher baud rate (p8622).
	- check the bit timing and if required optimize (p8623).
	For alarm value =2:
	- reduce the cycle times of the SDO receive messages.
	- SDO request from master only after SDO feedback for previous SDO request.
See also: p8622 (CAN bit rate), p8623 (CAN Bit Timing selection)	

A08754	CAN: Incorrect communications mode
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the "operational" mode, an attempt was made to change parameters p8700 ... p8737.
Remedy:	Change to the "pre-operational" or "stopped" mode.

A08755 CAN: Object cannot be mapped

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: NONE

Acknowledge: NONE
Cause: \quad The CANopen object is not provided for the Process Data Object (PDO) Mapping.
Remedy: Use a CANopen object intended for the PDO mapping or enter 0.
The following objects can be mapped in the Receive Process Data Object (RPDO) or Transmit Process Data Object (TPDO):

- RPDO: 6040 hex, 6060 hex, 60FF hex, 6071 hex; 5800 hex - 580F hex; 5820 hex -5827 hex
- TPDO: 6041 hex, 6061 hex, 6063 hex, 6069 hex, 606B hex, 606C hex, 6074 hex; 5810 hex - 581F hex; 5830 hex 5837 hex

Only sub-index 0 of the specified objects can be mapped.
Note:
As long as A08755 is present, the COB-ID cannot be set to valid.

A08756	CAN: Number of mapped bytes exceeded
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The number of bytes of the mapped objects exceeds the telegram size for net data. A max. of 8 bytes is permissible.
Remedy:	Map fewer objects or objects with a smaller data type.
	See also: p8710, p8711, p8712, p8713, p8714, p8715, p8716, p8717, p8730, p8731, p8732, p8733, p8734, p8735,
	p8736, p8737

A08757	CAN: Set COB-ID invalid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	For online operation, the appropriate COB-ID must be set invalid before mapping.
	Example:
	Mapping for RPDO 1 should be changed (p8710[0]).
	$-->$ set p8700[0] = C00006E0 hex (invalid COB-ID)
	$-->$ set p8710[0] as required.
	$-->$ p8700[0] enter a valid COB-ID
Remedy:	Set the COB-ID to invalid.

A08759	CAN: PDO COB-ID already available
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An existing PDO COB-ID was allocated.
Remedy:	Select another PDO COB-ID.

A08760	CAN: maximum size of the IF PZD exceeded
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum size of the IF PZD was exceeded.
	Alarm value (r2124, interpret decimal):
	1: error for IF PZD receive.
	2: error for IF PZD send.
	Note:
	IF: interface
Remedy:	Map fewer process data in PDO.
	Apply one of the following options to delete the alarm:
	- POWER ON (switch-off/switch-on).
	- carry out a warm restart (p0009 = 30, p0976 = 2).
	- execute CANopen NMT command reset node.
	- change CANopen NMT state.
	- delete alarm buffer [0...7] (p2111 = 0).

A08800	PROFlenergy energy-saving mode active
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The PROFlenergy energy-saving mode is active
	Alarm value (r2124, interpret decimal):
	Mode ID of the active PROFlenergy energy-saving mode.
	See also: r5600 (Pe energy-saving mode ID)
Remedy:	The alarm is automatically withdrawn when the energy-saving mode is exited.
	Note:
	The energy-saving mode is exited after the following events:
	- the PROFlenergy command end_pause is received from the higher-level control.
	- the higher-level control has changed into the STOP operating state.
	- the PROFINET connection to the higher-level control has been disconnected.

F13009	Licensing OA application not licensed
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	At least one OA application which is under license does not have a license.
	Note:
	Refer to r4955 and p4955 for information about the installed OA applications.
Remedy:	- enter and activate the license key for OA applications under license (p9920, p9921).
	- if necessary, de-activate unlicensed OA applications (p4956).

F13100	Know-how protection: Copy protection error
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The know-how protection with copy protection for the memory card is active.
	An error has occurred when checking the memory card.
	Fault value (r0949, interpret decimal):
	0: A memory card is not inserted.
	1: An invalid memory card is inserted (not SIEMENS).
	2: An invalid memory card is inserted.
	3: The memory card is being used in another Control Unit.
	12: An invalid memory card is inserted (OEM input incorrect, p7769).
	13: The memory card is being used in another Control Unit (OEM input incorrect, p7759).
	See also: p7765 (KHP configuration)
	For fault value $=0,1:$
	- insert the correct memory card and carry out POWER ON.
	For fault value $=2,3,12,13:$
	- contact the responsible OEM.
	- Deactivate copy protection (p7765) and acknowledge the fault (p3981).
	- Deactivate know-how protection (p7766 ... p7768) and acknowledge the fault (p3981).
	Note:
	In general, the copy protection can only be changed when know-how protection is deactivated.
	KHP: Know-How Protection
	See also: p3981 (Acknowledge drive object faults), p7765 (KHP configuration)

F13101	Know-how protection: Copy protection cannot be activated
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error occurred when attempting to activate the copy protection for the memory card.
	Fault value (r0949, interpret decimal):
	0 : A memory card is not inserted.
	1: An invalid memory card is inserted (not SIEMENS).
	Note:
	KHP: Know-How Protection
Remedy:	- insert a valid memory card.
	- Try to activate copy protection again (p7765).
	See also: p7765 (KHP configuration)
F13102	Know-how protection: Consistency error of the protected data
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	An error was identified when checking the consistency of the protected files. As a consequence, the project on the memory card cannot be run.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex: yyyy = object number, x xxx $=$ fault cause
	$x \mathrm{xxx}=1$:
	A file has a checksum error.
	xxxx $=2$:
	The files are not consistent with one another.
	xxxx $=3$:
	The project files, which were loaded into the file system via load (download from the memory card), are inconsistent. Note:
	KHP: Know-How Protection
Remedy:	- Replace the project on the memory card or replace project files for download from the memory card.
	- Restore the factory setting and download again.
F30001	Power unit: Overcurrent
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overcurrent condition.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- High discharge and post-charging current for line supply voltage interruptions.
	- High post-charging currents for overload when motoring and DC link voltage dip.
	- short-circuit currents at switch-on due to the missing line reactor.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	- line phase interrupted.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
	Bit 3: Overcurrent in the DC link.

Remedy:	Note:
	Fault value $=0$ means that the phase with overcurrent is not recognized.
	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star/delta).
	- U/f operation: Increase up ramp.
	- U/f operation: Check assignment of rated currents of motor and power unit.
	- check the line supply quality.
	- reduce motor load.
	- correct connection of line reactor.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
	- check the line supply phases.
F30002	Power unit: DC link voltage overvoltage
Message class:	DC link overvoltage (4)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overvoltage condition in the DC link.
	- motor regenerates too much energy.
	- line supply voltage too high.
	- line phase interrupted.
	- DC link voltage control switched off.
	- dynamic response of DC link voltage controller excessive or insufficient.
	Fault value (r0949, interpret decimal):
	DC link voltage at the time of trip [0.1 V].
Remedy:	-increase the ramp-down time (p 1121).
	- set the rounding times ($\mathrm{p} 1130, \mathrm{p} 1136$). This is particularly recommended in U/f operation to relieve the DC link voltage controller with rapid ramp-down times of the ramp-function generator.
	- Activate the DC link voltage controller (p1240, p1280).
	- adapt the dynamic response of the DC link voltage controller (p1243, p1247, p1283, p1287).
	- check the line supply and DC link voltage. set p0210 as low as possible (also see A07401, p1294 = 0).
	- check and correct the phase assignment at the power unit.
	- check the line supply phases.
	See also: p0210 (Drive unit line supply voltage), p1240 (Vdc controller configuration (vector control))
F30003	Power unit: DC link voltage undervoltage
Message class:	Infeed faulted (13)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an undervoltage condition in the DC link.
	- line supply failure
	- line supply voltage below the permissible value.
	- line phase interrupted.
	Note:
	The monitoring threshold for the DC link undervoltage is the minimum of the following values:
	- for a calculation, refer to p0210.
Remedy:	- check the line supply voltage
	- check the line supply phases.
	See also: p0210 (Drive unit line supply voltage)

F30004	Power unit: Overtemperature heat sink AC inverter
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature of the power unit heat sink has exceeded the permissible limit value.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- pulse frequency too high.
	Fault value (r0949, interpret decimal):
	Temperature [1 bit = 0.01 ${ }^{\circ}$ C].

Remedy:	- check the main circuit fuses.
- check whether a single-phase load is distorting the line voltages.	
- Detune the resonant frequency with the line inductance by using an upstream line	
	- Dampen the resonant frequency with the line inductance by switching over the DC
software (see p1810) - or increase the smoothing (see p1806). However, this can hat	
torque ripple at the motor output.	
- check the motor feeder cables.	
F30012	Power unit: Temperature sensor heat sink wire breakage
Message class:	Power electronics faulted (5)
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The connection to a heat sink temperature sensor in the power unit is interrupted.
	Fault value (r0949, interpret hexadecimal):
Bit 0: Module slot (electronics slot)	
Bit 1: Air intake	
Bit 2: Inverter 1	
Bit 3: Inverter 2	
Bit 4: Inverter 3	
Bit 5: Inverter 4	
Bit 6: Inverter 5	
Bit 7: Inverter 6	
Bit 8: Rectifier 1	
Bit 9: Rectifier 2	
Contact the manufacturer.	

F30013 Power unit: Temperature sensor heat sink short-circuit

Message class: Power electronics faulted (5)
Reaction: OFF1 (OFF2)

Acknowledge: IMMEDIATELY
Cause: \quad The heat sink temperature sensor in the power unit is short-circuited.
Fault value (r0949, interpret hexadecimal):
Bit 0: Module slot (electronics slot)
Bit 1: Air intake
Bit 2: Inverter 1
Bit 3: Inverter 2
Bit 4: Inverter 3
Bit 5: Inverter 4
Bit 6: Inverter 5
Bit 7: Inverter 6
Bit 8: Rectifier 1
Bit 9: Rectifier 2
Remedy: Contact the manufacturer.
F30015 (N, A) Power unit: Phase failure motor cable
Message class: Application/technological function faulted (17)
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: A phase failure in the motor feeder cable was detected
The signal can also be output in the following cases:

- the motor is correctly connected, but the drive has stalled in U/f control. In this case, a current of 0 A is possibly measured in one phase due to asymmetry of the currents.
- the motor is correctly connected, however the closed-speed control is instable and therefore an oscillating torque is generated.
Note:
Chassis power units do not feature phase failure monitoring.

4.2 List of faults and alarms

Remedy: \quad - check the motor feeder cables. \quad - increase the ramp-up or ramp-down time (p1120) if the drive has stalled in U/f control.

A30016 (N)	Power unit: Load supply switched out
Message class:	Network fault (2)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage is too low.
	Alarm value (r2124, interpret decimal):
	DC link voltage at the time of trip [0.1 V].
Remedy:	Under certain circumstances, the AC line supply is not switched on.
F30017	Power unit: Hardware current limit has responded too often
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The hardware current limitation in the relevant phase (see A30031, A30032, A30033) has responded too often. The number of times the limit has been exceeded depends on the design and type of power unit.
	- closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Fault value (r0949, interpret binary):
	Bit 0: Phase U
	Bit 1: Phase V
	Bit 2: Phase W
Remedy:	- check the motor data.
	- check the motor circuit configuration (star-delta).
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.

F30021

Message class:
Reaction:
Acknowledge:
Cause:

Power unit: Ground fault

Ground fault / inter-phase short-circuit detected (7)
OFF2
IMMEDIATELY
The power has detected a ground fault.
Possible causes:

- ground fault in the power cables.
- ground fault at the motor.
- CT defective.
- when the brake closes, this causes the hardware DC current monitoring to respond.
- short-circuit at the braking resistor.

Fault value (r0949, interpret decimal):
0:

- the hardware DC current monitoring has responded.
- short-circuit at the braking resistor.
>0 :
Absolute value, summation current [32767 = 271 \% rated current].

Remedy:	- check the power cable connections. - check the motor. - check the CT. - check the cables and contacts of the brake connection (a wire is possibly broken). - check the braking resistor. See also: p0287 (Ground fault monitoring thresholds)
F30022	Power unit: Monitoring U_ce
Message class:	Ground fault / inter-phase short-circuit detected (7)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	In the power unit, the monitoring of the collector-emitter voltage (U _ce) of the semiconductor has responded. Possible causes: - fiber-optic cable interrupted. - power supply of the IGBT gating module missing. - short-circuit at the power unit output. - defective semiconductor in the power unit. Fault value (r0949, interpret binary): Bit 0: Short-circuit in phase U Bit 1: Short circuit in phase V Bit 2: Short-circuit in phase W Bit 3: Light transmitter enable defective Bit 4: U_ce group fault signal interrupted See also: r0949 (Fault value)
Remedy:	- check the fiber-optic cable and if required, replace. - check the power supply of the IGBT gating module (24 V). - check the power cable connections. - select the defective semiconductor and replace.
F30024	Power unit: Overtemperature thermal model
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature difference between the heat sink and chip has exceeded the permissible limit value. - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. See also: r0037 (Power unit temperatures)
Remedy:	- adapt the load duty cycle. - check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. - if DC braking is active: reduce braking current (p1232).

4.2 List of faults and alarms

F30025	Power unit: Chip overtemperature
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The chip temperature of the semiconductor has exceeded the permissible limit value.
	- the permissible load duty cycle was not maintained.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- pulse frequency too high.
	Fault value (r0949, interpret decimal):
	Temperature difference between the heat sink and chip [$0.01^{\circ} \mathrm{C}$].
Remedy:	- adapt the load duty cycle.
	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	- check the motor load.
	- reduce the pulse frequency if this is higher than the rated pulse frequency.
	Notice:
	This fault can only be acknowledged after the alarm threshold for alarm A05001 has been undershot.
	See also: r0037 (Power unit temperatures)
F30027	Power unit: Precharging DC link time monitoring
Message class:	Infeed faulted (13)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit DC link was not able to be precharged within the expected time.
	1) There is no line supply voltage connected.
	2) The line contactor/line side switch has not been closed.
	3) The line supply voltage is too low.
	4) Line supply voltage incorrectly set (p0210).
	5) The precharging resistors are overheated as there were too many precharging operations per time unit.
	6) The precharging resistors are overheated as the DC link capacitance is too high.
	7) The DC link has either a ground fault or a short-circuit.
	8) Precharging circuit may be defective.
	Fault value (r0949, interpret binary):
	yyyyxxxx hex:
	yyyy = power unit state
	0 : Fault status (wait for OFF and fault acknowledgment).
	1: Restart inhibit (wait for OFF).
	2: Overvoltage condition detected -> change into the fault state.
	3: Undervoltage condition detected -> change into the fault state.
	4: Wait for bridging contactor to open -> change into the fault state.
	5: Wait for bridging contactor to open -> change into restart inhibit.
	6: Commissioning.
	7: Ready for precharging.
	8: Precharging started, DC link voltage less than the minimum switch-on voltage.
	9: Precharging, DC link voltage end of precharging still not detected.
	10: Wait for the end of the de-bounce time of the main contactor after precharging has been completed. 11: Precharging completed, ready for pulse enable.
	12: Reserved.
	xxxx = Missing internal enable signals, power unit (inverted bit-coded, FFFF hex -> all internal enable signals available)
	Bit 0 : Power supply of the IGBT gating shut down.
	Bit 1: Ground fault detected.

	Bit 2: Peak current intervention.
	Bit 3: I2t exceeded.
	Bit 4. Thermal model overtemperature calculated.
	Bit 5: (heat sink, gating module, power unit) overtemperature measured.
	Bit 6: Reserved.
	Bit 7: Overvoltage detected.
	Bit 8: Power unit has completed precharging, ready for pulse enable.
	Bit 9: Reserved.
	Bit 10: Overcurrent detected.
	Bit 11: Reserved.
	Bit 12: Reserved.
	Bit 13: Vce fault detected, transistor de-saturated due to overcurrent/short-circuit.
	Bit 14: Undervoltage detected.
	See also: p0210 (Drive unit line supply voltage)
Remedy:	In general:
	- check the line supply voltage at the input terminals.
	- check the line supply voltage setting (p0210).
	- wait until the precharging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply.
	For 5):
	- carefully observe the permissible precharging frequency (refer to the appropriate Equipment Manual).
	For 6):
	- check the capacitance of the DC link and, if necessary, reduce it in accordance with the maximum permissible DC link capacitance (see relevant Equipment Manual).
	For 7):
	- check the DC link for a ground fault or short circuit.
	See also: p0210 (Drive unit line supply voltage)
A30030	Power unit: Internal overtemperature alarm
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature inside the drive converter has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- possibly use an additional fan.
	- check whether the ambient temperature is in the permissible range.
	Notice:
	This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.
A30031	Power unit: Hardware current limiting in phase U
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period.
	- closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Note:
	Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.

4.2 List of faults and alarms

Remedy: - check the motor data and if required, recalculate the control parameters $(\mathrm{p} 0340=3)$. As an alternative, run a motor data identification ($\mathrm{p} 1910=1, \mathrm{p} 1960=1$).

- check the motor circuit configuration (star/delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

A30032	Power unit: Hardware current limiting in phase V
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Note:
	Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	Check the motor data and if required, recalculate the control parameters ($\mathrm{p} 0340=3$). As an alternative, run a motor data identification ($p 1910=1, p 1960=1$).
	- check the motor circuit configuration (star/delta).
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.

A30033

Power unit: Hardware current limiting in phase W
Message class: Power electronics faulted (5)
Reaction: NONE
Acknowledge: NONE

Cause: Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period.

- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.

Note:
Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy: \quad - check the motor data and if required, recalculate the control parameters $(\mathrm{p} 0340=3)$. As an alternative, run a motor data identification (p1910 = 1, p1960 = 1).

- check the motor circuit configuration (star/delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

A30034	Power unit: Internal overtemperature
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for internal overtemperature has been reached.
	If the temperature inside the unit continues to increase, fault F30036 may be triggered.
	- ambient temperature might be too high.
	- insufficient cooling, fan failure.

	Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting. Remedy: - check the ambient temperature. - check the fan for the inside of the unit.
F30035	Power unit: Air intake overtemperature
Message class:	Power electronics faulted (5)
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The air intake in the power unit has exceeded the permissible temperature limit.
	For air-cooled power units, the temperature limit is at $55^{\circ} \mathrm{C}$.
	- ambient temperature too high.
	- insufficient cooling, fan failure.
Fault value (r0949, interpret decimal):	
Temperature [0.01 $\left.{ }^{\circ} \mathrm{C}\right]$.	

F30036	Power unit: Internal overtemperature
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature inside the drive converter has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Fault value (ro949, interpret decimal):
Remedy:	Only for internal Siemens troubleshooting.
	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	Notice:

This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.

F30037	Power unit: Rectifier overtemperature
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature in the rectifier of the power unit has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- line supply phase failure.
	Fault value (r0949, interpret decimal):
Remedy:	Temperature [0.01 $\left.{ }^{\circ} \mathrm{C}\right]$.
	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	- check the motor load.
	- check the line supply phases.
	Notice:
	This fault can only be acknowledged after the alarm threshold for alarm A05004 has been undershot.

A30042	Power unit: Fan has reached the maximum operating hours
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum operating time of at least one fan will soon be reached, or has already been exceeded.
	Alarm value (r2124, interpret binary):
	Bit 0: heat sink fan will reach the maximum operating time in 500 hours.
	Bit 1: heat sink fan has exceeded the maximum operating time.
	Bit 8: internal device fan will reach the maximum operating time in 500 hours.
	Bit 9: internal device fan has exceeded the maximum operating time.
	Note:
	The maximum operating time of the heat sink fan in the power unit is displayed in p0252.
	The maximum operating time of the internal device fan in the power unit is internally specified and is fixed.
Remedy:	For the fan involved, carry out the following:
	- replace the fan.
	- reset the operating hours counter (p0251, p0254).

A30049	Power unit: Internal fan faulty
Message class:	Auxiliary unit faulted (20)
Reaction:	NONE
Acknowledge:	NONE
Cause: Remedy:	The internal fan has failed. Check the internal fan and replace if necessary.
F30051	Power unit: Motor holding brake short circuit detected
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY Cause:
	A short-circuit at the motor holding brake terminals has been detected. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
	- check the motor holding brake for a short-circuit.
	- check the connection and cable for the motor holding brake.

F30052	EEPROM data error
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	EEPROM data error of the power unit module.
	Fault value (r0949, interpret decimal):
	$0,2,3,4:$
	The EEPROM data read in from the power unit module is inconsistent.
	1:
	EEPROM data is not compatible to the firmware of the Control Unit.
	Replace power unit module.

A30054 (F, N) Power unit: Undervoltage when opening the brake

Message class: Supply voltage fault (undervoltage) (3)
Reaction: NONE
Acknowledge: NONE

Cause: \quad When the brake is being opened, it is detected that the power supply voltage is less than 21.4 V
Alarm value (r2124, interpret decimal):
Supply voltage fault [0.1 V].
Example:
Alarm value $=195$--> voltage $=19.5 \mathrm{~V}$

Remedy:	Check the 24 V voltage for stability and value.
F30055	Power unit: Braking chopper overcurrent
Message class:	Braking Module faulted (14)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An overcurrent condition has occurred in the braking chopper.
Remedy:	- check whether the braking resistor has a short circuit.
	- for an external braking resistor, check whether the resistor may have been dimensioned too small.
	Note:
	The braking chopper is only enabled again at pulse enable after the fault has been acknowledged.

A30057	Power unit: Line asymmetry
Message class:	Network fault (2)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Frequencies have been detected on the DC link voltage that would suggest line asymmetry or failure of a line phase.
	It is also possible that a motor phase has failed.
	Fault F30011 is output if the alarm is present and at the latest after 5 minutes.
	The precise duration depends on the power unit type and the particular frequencies. For booksize and chassis power units, the duration also depends on how long the alarm has been active.
	Alarm value (r2124, interpret decimal): Remedy:
	Only for internal Siemens troubleshooting.
	- check the line phase connection.
	- check the motor feeder cable connections.
If there is no phase failure of the line or motor, then line asymmetry is involved.	
- reduce the power in order to avoid fault F30011.	

F30059	Power unit: Internal fan faulty
Message class:	Auxiliary unit faulted (20)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The internal power unit fan has failed and is possibly defective.
Remedy:	Check the internal fan and replace if necessary.

A30065 (F, N)	Voltage measured values not plausible
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage measurement is not supplying any plausible values
	Alarm value (r2124, interpret bitwise binary):
	Bit 1: Phase U.
	Bit 2: Phase V.
	Bit 3: Phase W.
	- Deactivate voltage measurement (p0247.0 = 0).
Remedy:	- Deactivate flying restart with voltage measurement (p0247.5 = 0) and deactivate fast flying restart (p1780.11 = 0).
F30071	No new actual values received from the Power Module
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	More than one actual value telegram from the power unit module has failed.
Remedy:	Check the interface (adjustment and locking) to the power unit module.

F30072	Setpoints can no longer be transferred to the Power Module
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	More than one setpoint telegram was not able to be transferred to the power unit module.
Remedy:	Check the interface (adjustment and locking) to the power unit module.
F30074 (A)	Communication error between the Control Unit and Power Module
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Communications between the Control Unit (CU) and Power Module (PM) via the interface no longer possible. The CU may have been withdrawn or is incorrectly inserted.
	Fault value (r0949, interpret hexadecimal):
	0 hex:
	- a Control Unit with external 24 V supply was withdrawn from the Power Module during operation.
	- with the Power Module switched off, the external 24 V supply for the Control Unit was interrupted for some time. 1 hex:
	The Control Unit was withdrawn from the Power Module during operation, although the encoderless safe motion monitoring functions are enabled. This is not supported. After re-inserting the Control Unit in operation, communications to the Power Module no longer possible.
	20A hex:
	The Control Unit was inserted on a Power Module, which has another code number.
	20B hex:
	The Control Unit was inserted on a Power Module, which although it has the same code number, has a different serial number. The Control Unit executes an automatic warm restart to accept the new calibration data.
Remedy:	For fault value $=0$ and 20A hex:
	Insert the Control Unit on an appropriate Power Module and continue operation. If required, carry out a POWER ON of the Control Unit.
	For fault value $=1$ hex:
	Carry out a POWER ON of the Control Unit.
F30075	Configuration of the power unit unsuccessful
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A communication error has occurred while configuring the power unit using the Control Unit. The cause is not clear. Fault value (r0949, interpret decimal):
	0 :
	The output filter initialization was unsuccessful.
	Activation/deactivation of the regenerative feedback functionality was unsuccessful.
Remedy:	- acknowledge the fault and continue operation.
	- if the fault reoccurs, carry out a POWER ON (switch-off/switch-on).
	- if required, replace the power unit.
F30080	Power unit: Current increasing too quickly
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an excessive rate of rise in the overvoltage range.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- power cables are not correctly connected.

Remedy:	- power cables exceed the maximum permissible length. - power unit defective.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star-delta)
	- U/f operation: Increase up ramp.
	- U/f operation: Check assignment of rated currents of motor and power unit.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
F30081	Power unit: Switching operations too frequent
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has executed too many switching operations for current limitation.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
Remedy:	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star-delta)
	- U/f operation: Increase up ramp.
	- U/f operation: Check assignment of rated currents of motor and power unit.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
F30105	PU: Actual value sensing fault
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA).
	The incorrect actual value channels are displayed in the following diagnostic parameters.
Remedy:	Evaluate the diagnostic parameters.
	If the actual value channel is incorrect, check the components and if required, replace.

A30502	Power unit: DC link overvoltage
Message class:	DC link overvoltage (4)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power unit has detected overvoltage in the DC link on a pulse inhibit.
	- device connection voltage too high.
	- line reactor incorrectly dimensioned.
	Alarm value (r0949, interpret decimal):
	DC link voltage [1 bit = 100 mV].
	See also: ro070 (Actual DC link voltage)
	- check the device supply voltage (p0210).
	- check the dimensioning of the line reactor.
Remedy:	See also: p0210 (Drive unit line supply voltage)

4.2 List of faults and alarms

	Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.	
Remedy:	- select Safe Torque Off and de-select again.
	- carry out a POWER ON (switch-off/switch-on).
- check whether additional faults are present and if required, perform diagnostics.	
	- check the electrical cabinet design and cable routing for EMC compliance

F30649	SI P2: Internal software error
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal error in the Safety Integrated software on processor 2 has occurred.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (ro949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
	- carry out a POWER ON (switch-off/switch-on).
Remedy:	- re-commission the "Safety Integrated" function and carry out a POWER ON.
	- contact Technical Support.
	- replace Control Unit.

F30650
Message class
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The drive-integrated "Safety Integrated" function on processor 2 requires an acceptance test.
Note:
This fault results in a STOP A that can be acknowledged.
Fault value (r0949, interpret decimal):
130: Safety parameters for processor 2 not available.
Note:
This fault value is always output when Safety Integrated is commissioned for the first time.
1000: Reference and actual checksum on processor 2 are not identical (booting).

- at least one checksum-checked piece of data is defective.
- safety parameters set offline and loaded into the Control Unit.

2000: Reference and actual checksum on processor 2 are not identical (commissioning mode).

- reference checksum incorrectly entered on processor 2 (p9899 not equal to r9898).

2003: Acceptance test is required as a safety parameter has been changed.
2010: Enable of safety-related brake control between the two monitoring channels differ (p9602 not equal to p9802).
9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy: \quad For fault value $=130$:

- carry out safety commissioning routine.

For fault value $=1000$:

- again carry out safety commissioning routine.
- replace the memory card or Control Unit.
- Using STARTER, activate the safety parameters for the drive involved (change settings, copy parameters, activate settings).
For fault value $=2000$:
- check the safety parameters on processor 2 and adapt the reference checksum (p9899).

For fault value $=2003$:

- carry out an acceptance test and generate an acceptance report.

For fault value $=2010$:

- check the enable the safety-related brake control on both monitoring channels (p9602 $=\mathrm{p} 9802$).

For fault value $=9999$:

- carry out diagnostics for the other safety-related fault that is present.

See also: p9799 (SI reference checksum SI parameters (processor 1)), p9899 (SI reference checksum SI parameters (processor 2))

F30651	SI P2: Synchronization with Control Unit unsuccessful
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function requires synchronization of the safety time slices on processor 1
	and processor 2. This synchronization routine was unsuccessful.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON (switch-off/switch-on).
F30655	SI P2: Align monitoring functions
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	- exit the safety commissioning mode (p0010 = 0).
	- carry out a PowER ON (switch-off/switch-on) for the Control Unit.
Remedy:	- acknor has occurred when aligning the Safety Integrated monitoring functions on processor 1 and processor 2.

F30659	SI P2: Write request for parameter rejected
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The write request for one or several Safety Integrated parameters on processor 2 was rejected.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, interpret decimal):
	10: An attempt was made to enable the STO function although this cannot be supported.
	15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.
	16: An attempt was made to enable the PROFIsafe communications although this cannot be supported.
	18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.
	20: An attempt was made to simultaneously enable both the drive-integrated motion monitoring functions via integrated F-DI and STO via terminals, even though these cannot be supported at the same time.
	28: An attempt was made to enable the "STO via terminals at the Power Module" function although this cannot be supported.
	See also: r9771 (SI common functions (processor 1)), r9871 (SI common functions (processor 2))
Remedy:	For fault value $=10,15,16,18$:
	- check whether there are faults in the safety function alignment (F01655, F30655) and if required, carry out diagnostics for the faults involved.
	- use a Control Unit that supports the required function.
	For fault value $=28$:
	- use the power unit with the feature "STO via terminals at the Power Module".
	Note:
	F-DI: Fail-safe Digital Input
	STO: Safe Torque Off
F30662	Error in internal communications
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A module-internal communication error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version.
	- contact Technical Support.
F30664	Error while booting
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An error has occurred during booting.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version.
	- contact Technical Support.

F30665	SI P2: System is defective
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A system defect was detected before the last boot or in the actual one. The system might have been rebooted (reset).
	Fault value (r0949, interpret hexadecimal):
	200000 hex, 400000 hex:
	- fault in the actual booting/operation.
	Additional values:
	- defect before the last time that the system booted.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version.
	- contact Technical Support.
	For fault value $=400000$ hex:
	- ensure that the Control Unit is connected to the Power Module.

A30693 (F)	SI P2: Safety parameter settings changed, POWER ON required
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Safety parameters have been changed; these will only take effect following a POWER ON.

 Notice:
 All changed parameters of the safety motion monitoring functions will only take effect following a POWER ON.
 Alarm value (r2124, interpret decimal):
 Parameter number of the safety parameter which has changed, necessitating a POWER ON.
 Remedy: - execute the function "Copy RAM to ROM".
- carry out a POWER ON (switch-off/switch-on).

A30788	Automatic test stop: wait for STO deselection via SMM
Message class:	Safety monitoring channel has identified an error (10)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic test stop was not able to be carried out after powering up. Possible causes: - the STO function is selected via Safety Extended Functions. - a safety message is present, that resulted in a STO. Remedy: - Deselect STO via Safety Extended Functions. - remove the cause of the safety messages and acknowledge the messages. The automatic test stop is performed after removing the cause.

N30800 (F)	Power unit: Group signal
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The power unit has detected at least one fault.
Remedy:	Evaluate the other messages that are presently available.

F30802	Power unit: Time slice overflow
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred.
	Fault value (r0949, interpret decimal):
	$\mathrm{xx}:$ Time slice number xx

4.2 List of faults and alarms

Remedy: \quad - carry out a POWER ON (switch-off/switch-on) for all components. \begin{tabular}{l}

- upgrade firmware to later version.

- contact Technical Support.
\end{tabular}

F30804 (N, A)	Power unit: CRC
Message class:	Hardware/software error (1)
Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A checksum error (CRC error) has occurred for the power unit.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

F30805	Power unit: EEPROM checksum error
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
Remedy:	Replace the module.

F30809	Power unit: Switching information not valid
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For 3P gating unit, the following applies:
Remedy:	The last switching status word in the setpoint telegram is identified by the end ID. Such an end ID was not found. - - upgrade firmware to later version. - contact Technical Support.

A30810 (F)	Power unit: Watchdog timer
Message class:	Hardware/software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	When booting it was detected that the cause of the previous reset was an SAC watchdog timer overflow.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

F30850 Power unit: Internal software error
Message class: Hardware/software error (1)
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: POWER ON
Cause: \quad An internal software error has occurred in the power unit.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - replace power unit.
- if required, upgrade the firmware in the power unit.
- contact Technical Support.

F30903	Power unit: I2C bus error occurred
Message class:	Hardware/software error (1)
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Communications error with an EEPROM or an analog/digital converter.
	Fault value (r0949, interpret hexadecimal):
	80000000 hex:
	- internal software error.
	00000001 hex ... 0000FFFF hex:
	- module fault.
Remedy:	For fault value $=80000000$ hex:
	- upgrade firmware to later version.
	For fault value $=00000001$ hex ... 0000FFFF hex:
	- replace the module.
A30920 (F)	Temperature sensor fault
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected.
	KTY: R > 2120 Ohm, PT1000: R > 2120 Ohm
	2: Measured resistance too low.
	PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm, PT1000: $\mathrm{R}<603$ Ohm
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.
F30950	Power unit: Internal software error
Message class:	Hardware/software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- if necessary, upgrade the firmware in the power unit to a later version. - contact Technical Support.

A30999 (F, N)	Power unit: Unknown alarm
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
	- replace the firmware on the power unit by an older firmware version (r0128).
Remedy:	- upgrade the firmware on the Control Unit (r0018).

F35950	TM: Internal software error
Message class:	Hardware/software error (1)
Reaction:	OFF2 (NONE)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred. Fault value (r0949, interpret decimal): Information about the fault source. Only for internal Siemens troubleshooting. Remedy:- if necessary, upgrade the firmware in the Terminal Module to a later version. - contact Technical Support.

A50001 (F)	PROFINET configuration error
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A PROFINET controller attempts to establish a connection using an incorrect configuring telegram. The "Shared
	Device" function has been activated (p8929 = 2).
	Alarm value (r2124, interpret decimal):
	10: A/F-CPU configures mixed PZD/PROFIsafe telegram.
	13: F-CPU and PROFIsafe is not activated (p9601.3).
	15: PROFIsafe telegram of the F-CPU does not match the setting in p9501.30.
	See also: p9601 (SI enable functions integrated in the drive (processor 1))
Remedy:	Check the configuration of the PROFINET controllers as well as the p8929 setting.

A50010 (F)	PROFINET: Consistency error affecting adjustable parameters
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A consistency error was detected when activating the configuration (p8925) for the PROFINET interface. The
	currently set configuration has not been activated.
	Alarm value (r2124, interpret decimal):
	0: general consistency error
	1: error in the IP configuration (IP address, subnet mask or standard gateway).
	2: Error in the station names.
	3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
	4: a cyclic PROFINET connection is not possible as DHCP is activated.
	Note:
	DHCP: Dynamic Host Configuration Protocol
See also: p8920 (PN Name of Station), p8921 (PN IP address), p8922 (PN Default Gateway), p8923 (PN Subnet	
	Mask), p8924 (PN DHCP Mode)
	- check the required interface configuration (p8920 and following), correct if necessary, and activate (p8925).
	or
	- reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software).
	See also: p8925 (Activate PN interface configuration)

A50011 (F)	Ethernet/IP: configuration error
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An EtherNet/IP controller attempts to establish a connection using an incorrect configuring telegram.
	The telegram length set in the controller does not match the parameterization in the drive device.
Remedy:	Check the set telegram length.
	For p0922 not equal to 999, then the length of the selected telegram applies.
	For p0922 = 999, the maximum interconnected PZD (r2067) applies.
	See also: p0922 (PROFIdrive PZD telegram selection), r2067 (PZD maximum interconnected)

A50020 (F)	PROFINET: Second controller missing
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The PROFINET function "Shared Device" has been activated (p8929 = 2). However, only the connection to a
	PROFINET controller is present.
Remedy:	Check the configuration of the PROFINET controllers as well as the p8929 setting.

F50510	FBLOCKS: Logon of the run-time group rejected
Message class:	General drive fault (19)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	When the run-time groups of the free function blocks attempted to log on with the sampling time management, the logon of at least one run-time group was rejected.
	Too many different hardware sampling times may have been assigned to the free function blocks.
Remedy:	- check number of available hardware sampling times (T_sample $<8 \mathrm{~ms}$) (r7903).

F50511 FBLOCKS: Memory no longer available for free function blocks

Message class: General drive fault (19)
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: When the free function blocks were activated, more memory was requested than was available on the Control Unit.
Remedy: Not necessary.

A50513 (F)	FBLOCKS: Run sequence value already assigned
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to assign a run sequence value already assigned to a function block on this drive object to another additional function block on the same drive object. A run sequence value can only be precisely assigned to one function block on one drive object.
Remedy:	Set another value that is still available on this drive object for the run sequence.

A50517 FBLOCKS: Int. meas. active
Message class: General drive fault (19)
Reaction: NONE
Acknowledge: NONE

Cause: A Siemens internal measurement has been activated.
Remedy: Carry out a POWER ON (switch-off/switch-on) for the Control Unit involved.

F50518

Message class:
Reaction:
Acknowledge:
Cause:

FBLOCKS: Sampling time of free run-time group differs at download
General drive fault (19) NONE
IMMEDIATELY
In the STARTER/SCOUT project that was downloaded, the hardware sampling time of a free run-time group (1 <= p20000[i] <= 256) was set to a value that was either too low or too high.
The sampling time must be between 1 ms and the value r20003-r20002. If the sampling time of the selected free run-time group is $<1 \mathrm{~ms}$, the equivalent value of 1 ms is used. If the value >= r20003, then the sampling time is set to the next higher or the same software sampling time >= r21003.
Fault value (r0949, interpret decimal):
Number of the p20000 index of the run-time group where the sampling time is incorrectly set.
Number of the run-time group $=$ fault value +1

4.2 List of faults and alarms

Remedy: - correctly set the sampling time of the run-time group.

- if required, take all of the blocks from the run-time group.

Note:
Fault F50518 only detects an incorrectly parameterized run-time group. If, after correcting p20000[i] in the project, this error occurs again at download, then the run-time group involved should be identified using the fault value (r0949) and the sampling time correctly set.

Appendix

Content

A. 1 ASCII table (characters that can be displayed) 732
A. 2 List of abbreviations 735

A. 1 ASCII table (characters that can be displayed)

The following table includes the decimal and hexadecimal notation of ASCII characters that can be displayed (printable).

Table A-1 ASCII table (characters that can be displayed)

Character	Decimal	Hexadecimal	Meaning
	32	20	Space
!	33	21	Exclamation mark
"	34	22	Quotation mark
\#	35	23	Number sign
\$	36	24	Dollar
\%	37	25	Percent
\&	38	26	Ampersand
,	39	27	Apostrophe, closing single quotation mark
$($	40	28	Opening parenthesis
)	41	29	Closing parenthesis
*	42	2A	Asterisk
+	43	2B	Plus
,	44	2 C	Comma
-	45	2D	Hyphen, minus
.	46	2E	Period, decimal point
1	47	2 F	Slash, slant
0	48	30	Digit 0
1	49	31	Digit 1
2	50	32	Digit 2
3	51	33	Digit 3
4	52	34	Digit 4
5	53	35	Digit 5
6	54	36	Digit 6
7	55	37	Digit 7
8	56	38	Digit 8
9	57	39	Digit 9
:	58	3A	Colon
;	59	3B	Semicolon
<	60	3C	Less than
=	61	3D	Equals
>	62	3E	Greater than
?	63	3F	Question mark
@	64	40	Commercial At

Table A-1 ASCII table (characters that can be displayed), continued

Character	Decimal	Hexadecimal	Meaning
A	65	41	Capital letter A
B	66	42	Capital letter B
C	67	43	Capital letter C
D	68	44	Capital letter D
E	69	45	Capital letter E
F	70	46	Capital letter F
G	71	47	Capital letter G
H	72	48	Capital letter H
I	73	49	Capital letter I
J	74	4A	Capital letter J
K	75	4B	Capital letter K
L	76	4 C	Capital letter L
M	77	4D	Capital letter M
N	78	4E	Capital letter N
0	79	4F	Capital letter O
P	80	50	Capital letter P
Q	81	51	Capital letter Q
R	82	52	Capital letter R
S	83	53	Capital letter S
T	84	54	Capital letter T
U	85	55	Capital letter U
V	86	56	Capital letter V
W	87	57	Capital letter W
X	88	58	Capital letter X
Y	89	59	Capital letter Y
Z	90	5A	Capital letter Z
[91	5B	Opening bracket
1	92	5C	Backslash
]	93	5D	Closing bracket
\wedge	94	5E	Circumflex
-	95	5F	Underline
	96	60	Opening single quotation mark
a	97	61	Small letter a
b	98	62	Small letter b
c	99	63	Small letter c
d	100	64	Small letter d

A. 1 ASCII table (characters that can be displayed)

Table A-1 ASCII table (characters that can be displayed), continued

Character	Decimal	Hexadecimal	Meaning
e	101	65	Small letter e
f	102	66	Small letter f
g	103	67	Small letter g
h	104	68	Small letter h
i	105	69	Small letter i
j	106	6A	Small letter j
k	107	6B	Small letter k
1	108	6C	Small letter I
m	109	6D	Small letter m
n	110	6E	Small letter n
-	111	6 F	Small letter o
p	112	70	Small letter p
q	113	71	Small letter q
r	114	72	Small letter r
s	115	73	Small letter s
t	116	74	Small letter t
u	117	75	Small letter u
v	118	76	Small letter v
w	119	77	Small letter w
x	120	78	Small letter x
y	121	79	Small letter y
z	122	7A	Small letter z
\{	123	7B	Opening brace
\|	124	7C	Vertical line
\}	125	7D	Closing brace
\sim	126	7E	Tilde

A. 2 List of abbreviations

Note

The following list of abbreviations includes all abbreviations and their meanings used in the entire SINAMICS family of drives.

Abbreviation

A
A...

AC
ADC
AI
AIM
ALM
AO
AOP
APC
AR
ASC
ASCII

AS-i

ASM
AVS
B
BB
BERO
BI
BIA

BICO
BLM
BO
BOP
C
C
C...

CAN
CBC
CBE
CD
CDS
CF Card

Source of abbreviation

Alarm

Alternating Current
Analog Digital Converter
Analog Input
Active Interface Module
Active Line Module
Analog Output
Advanced Operator Panel
Advanced Positioning Control
Automatic Restart
Armature Short Circuit
American Standard Code for Information Interchange
AS-Interface (Actuator Sensor Interface)

Asynchronmotor
Active Vibration Suppression

Betriebsbedingung

Binector Input
Berufsgenossenschaftliches Institut für Arbeitssicherheit

Binector Connector Technology
Basic Line Module
Binector Output
Basic Operator Panel

Capacitance

Controller Area Network
Communication Board CAN
Communication Board Ethernet
Compact Disc
Command Data Set
CompactFlash Card

Significance

Warning
Alternating current
Analog-Digital converter
Analog input
Active Interface Module
Active Line Module
Analog output
Advanced Operator Panel
Advanced Positioning Control
Automatic restart
Armature short-circuit
American coding standard for the exchange of information
AS-Interface (open bus system in automation technology)
Induction motor
Active load vibration damping

Operation condition
Contactless proximity switch
Binector input
BG-Institute for Occupational Safety and Health

Binector connector technology
Basic Line Module
Binector output
Basic operator panel

Capacitance

Safety message
Serial bus system
Communication Board CAN
PROFINET communication module (Ethernet)
Compact disk
Command data set
CompactFlash card

Abbreviation	Source of abbreviation	Significance
Cl	Connector Input	Connector input
CLC	Clearance Control	Clearance control
CNC	Computerized Numerical Control	Computer-supported numerical control
CO	Connector Output	Connector output
CO/BO	Connector Output / Binector Output	Connector Output / Binector Output
COB ID	CAN Object-Identification	CAN Object-Identification
CoL	Certificate of License	Certificate of License
COM	Common contact of a changeover relay	Center contact of a changeover contact
COMM	Commissioning	Startup
CP	Communication Processor	Communications processor
CPU	Central Processing Unit	Central processing unit
CRC	Cyclic Redundancy Check	Cyclic redundancy check
CSM	Control Supply Module	Control Supply Module
CU	Control Unit	Control Unit
CUA	Control Unit Adapter	Control Unit Adapter
CUD	Control Unit DC	Control Unit DC
D		
DAC	Digital Analog Converter	Digital analog converter
DC	Direct Current	DC current
DCB	Drive Control Block	Drive Control Block
DCBRK	DC Brake	DC braking
DCC	Drive Control Chart	Drive Control Chart
DCN	Direct Current Negative	Direct current negative
DCP	Direct Current Positive	Direct current positive
DDC	Dynamic Drive Control	Dynamic Drive Control
DDS	Drive Data Set	Drive Data Set
DI	Digital Input	Digital input
DI/DO	Digital Input / Digital Output	Digital input/output, bidirectional
DMC	DRIVE-CLiQ Hub Module Cabinet	DRIVE-CLiQ Hub Module Cabinet
DME	DRIVE-CLiQ Hub Module External	DRIVE-CLiQ Hub Module External
DMM	Double Motor Module	Double Motor Module
DO	Digital Output	Digital output
DO	Drive Object	Drive object
DP	Decentralized Peripherals	Distributed I/O
DPRAM	Dual-Port Random Access Memory	Dual-Port Random Access Memory
DQ	DRIVE-CLiQ	DRIVE-CLiQ
DRAM	Dynamic Random Access Memory	Dynamic Random Access Memory
DRIVE-CLiQ	Drive Component Link with IQ	Drive Component Link with IQ
DSC	Dynamic Servo Control	Dynamic Servo Control
DSM	Double submodule	Double submodule
DTC	Digital Time Clock	Timer

Abbreviation	Source of abbreviation	Significance
E		
EASC	External Armature Short-Circuit	External armature short-circuit
EDS	Encoder Data Set	Encoder data set
EEPROM	Electrically Erasable Programmable Read-Only Memory	Electrically Erasable Programmable Read-Only-Memory
EGB	Elektrostatisch gefährdete Baugruppen	Electrostatic sensitive devices
ELCB	Earth Leakage Circuit-Breaker	Residual current operated circuit breaker
ELP	Earth Leakage Protection	Ground-fault monitoring
EMC	Electromagnetic Compatibility	Electromagnetic compatibility
EMF	Electromotive Force	Electromotive force
EMK	Elektromotorische Kraft	Electromotive force
EMV	Elektromagnetische Verträglichkeit	Electromagnetic compatibility
EN	Europäische Norm	European Standard
EnDat	Encoder-Data-Interface	Encoder interface
EP	Enable Pulses	Pulse enable
EPOS	Einfachpositionierer	Basic positioner
ES	Engineering System	Engineering system
ESB	Ersatzschaltbild	Equivalent circuit diagram
ESD	Electrostatically Sensitive Devices	Electrostatic sensitive devices
ESM	Essential Service Mode	Essential service mode
ESR	Extended Stop and Retract	Extended stop and retract
F		
F...	Fault	Fault
FAQ	Frequently Asked Questions	Frequently Asked Questions
FBLOCKS	Free Blocks	Free function blocks
FCC	Function control chart	Function control chart
FCC	Flux Current Control	Flux current control
FD	Function Diagram	Function diagram
F-DI	Fail-safe Digital Input	Failsafe digital input
F-DO	Fail-safe Digital Output	Fail-safe digital output
FEPROM	Flash-EPROM	Non-volatile write and read memory
FG	Function Generator	Function Generator
FI	-	Fault current
FOC	Fiber-Optic Cable	Fiber-optic cable
FP	Funktionsplan	Function diagram
FPGA	Field Programmable Gate Array	Field Programmable Gate Array
FW	Firmware	Firmware
G		
GB	Gigabyte	Gigabyte
GC	Global Control	Global control telegram (broadcast telegram)
GND	Ground	Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as M)

Abbreviation	Source of abbreviation	Significance
GSD	Gerätestammdatei	Generic Station Description: Describes the features of a PROFIBUS slave
GSV	Gate Supply Voltage	Gate supply voltage
GUID	Globally Unique Identifier	Globally Unique Identifier
H		
HF	High Frequency	High frequency
HFD	Hochfrequenzdrossel	Radio frequency reactor
HLA	Hydraulic Linear Actuator	Hydraulic linear actuator
HLG	Hochlaufgeber	Ramp-function Generator
HM	Hydraulic Module	Hydraulic Module
HMI	Human Machine Interface	Human Machine Interface
HTL	High-Threshold Logic	Logic with high interference threshold
HW	Hardware	Hardware
I		
i. V.	In Vorbereitung	Under development: This property is currently not available
I/O	Input/Output	Input/output
I2C	Inter-Integrated Circuit	Internal serial data bus
IASC	Internal Armature Short-Circuit	Internal armature short-circuit
IBN	Inbetriebnahme	Startup
ID	Identifier	Identification
IE	Industrial Ethernet	Industrial Ethernet
IEC	International Electrotechnical Commission	International Electrotechnical Commission
IF	Interface	Interface
IGBT	Insulated Gate Bipolar Transistor	Insulated gate bipolar transistor
IGCT	Integrated Gate-Controlled Thyristor	Semiconductor power switch with integrated control electrode
IL	Impulslöschung	Pulse suppression
IP	Internet Protocol	Internet protocol
IPO	Interpolator	Interpolator
IT	Isolé Terre	Non-grounded three-phase line supply
IVP	Internal Voltage Protection	Internal voltage protection
J		
JOG	Jogging	Jogging
K		
KDV	Kreuzweiser Datenvergleich	Data cross-check
KHP	Know-How Protection	Know-how protection
KIP	Kinetische Pufferung	Kinetic buffering
Kp	-	Proportional gain
KTY84	-	Temperature sensor
L		
L	-	Symbol for inductance
LED	Light Emitting Diode	Light emitting diode

Abbreviation	Source of abbreviation
LIN	Linearmotor
LR	Lageregler
LSB	Least Significant Bit
LSC	Line-side converter
LSS	Line-Side Switch
LU	Length Unit
LWL	Lichtwellenleiter
M	
M	-
M	Masse
MB	Megabyte
MCC	Motion Control Chart
MDI	Manual Data Input
MDS	Motor Data Set
MLFB	Maschinenlesbare Fabrikatebezeichnung
MM	Motor Module
MMC	Man-Machine Communication
MMC	Micro Memory Card
MSB	Most Significant Bit
MSC	Motor Side Converter
MSCY_C1	Master Slave Cycle Class 1
MSC	Motorstromrichter
MT	Messtaster
N	
N. C.	Not Connected
N...	No Report
NAMUR	Normenarbeitsgemeinschaft für Mess- und Regeltechnik in der chemischen Industrie
NC	Normally Closed (contact)
NC	Numerical Control
NEMA	National Electrical Manufacturers Association
NM	Nullmarke
NO	Normally Open (contact)
NSR	Netzstromrichter
NTP	Network Time Protocol
NVRAM	Non-Volatile Random Access Memory

Significance

Linear motor
Position controller
Least Significant Bit
Line-side converter
Line-side switch
Length unit
Fiber-optic cable

Symbol for torque
Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as GND)
Megabyte
Motion Control Chart
Manual data input
Motor data set
Machine-readable product code
Motor Module
Man-machine communication
Micro memory card
Most significant bit
Motor-side converter
Cyclic communication between master (class 1)
and slave
Motor-side converter
Probe

Not connected
No report or internal message
Standardization association for measurement and control in chemical industries
NC contacts
Numerical control
Standardization association in USA (United States of America)
Zero mark
NO contacts
Line-side converter
Standard for synchronization of the time of day
Non-volatile read/write memory

Abbreviation	Source of abbreviation	Significance
0		
OA	Open Architecture	Software component which provides additional functions for the SINAMICS drive system
OAIF	Open Architecture Interface	Version of the SINAMICS firmware as of which the OA-application can be used
OASP	Open Architecture Support Package	Expands the STARTER commissioning tool by the corresponding OA-application
OC	Operating Condition	Operation condition
OEM	Original Equipment Manufacturer	Original equipment manufacturer
OLP	Optical Link Plug	Bus connector for fiber-optic cable
OMI	Option Module Interface	Option Module Interface
P		
p...	-	Adjustable parameters
P1	Processor 1	CPU 1
P2	Processor 2	CPU 2
PB	PROFIBUS	PROFIBUS
PcCtrl	PC Control	Master control
PD	PROFIdrive	PROFIdrive
PDC	Precision Drive Control	Precision Drive Control
PDS	Power Unit Data Set	Power unit data set
PE	Protective Earth	Protective ground
PELV	Protective Extra-Low Voltage	Safety extra-low voltage
PFH	Probability of dangerous failure per hour	Probability of dangerous failure per hour
PG	Programmiergerät	Programming device
PI	Proportional integral	Proportional integral
PID	Proportional integral differential	Proportional integral differential
PLC	Programmable Logic Controller	Programmable logic controller
PLL	Phase-locked loop	Phase-locked loop
PM	Power Module	Power Module
PMSM	Permanent-Magnet Synchronous Motor	Permanent-magnet synchronous motor
PN	PROFINET	PROFINET
PNO	PROFIBUS Nutzerorganisation	PROFIBUS user organization
PPI	Point-to-Point Interface	Point-to-point interface
PRBS	Pseudo Random Binary Signal	White noise
PROFIBUS	Process Field Bus	Serial data bus
PS	Power Supply	Power supply
PSA	Power Stack Adapter	Power Stack Adapter
PT1000	-	Temperature sensor
PTC	Positive Temperature Coefficient	Positive temperature coefficient
PTP	Point-To-Point	Point-to-point
PWM	Pulse Width Modulation	Pulse width modulation
PZD	Prozessdaten	Process data

Abbreviation	Source of abbreviation	Significance
Q		
R		
r...	-	Display parameters (read only)
RAM	Random Access Memory	Speicher zum Lesen und Schreiben
RCCB	Residual Current Circuit Breaker	Residual current operated circuit breaker
RCD	Residual Current Device	Residual current operated circuit breaker
RCM	Residual Current Monitor	Residual current monitor
REL	Reluctance motor textile	Reluctance motor textile
RESM	Reluctance Synchronous Motor	Synchronous reluctance motor
RFG	Ramp-Function Generator	Ramp-function Generator
RJ45	Registered Jack 45	Term for an 8-pin socket system for data transmission with shielded or non-shielded multiwire copper cables
RKA	Rückkühlanlage	Cooling unit
RLM	Renewable Line Module	Renewable Line Module
RO	Read Only	Read only
ROM	Read-Only Memory	Read-only memory
RPDO	Receive Process Data Object	Receive Process Data Object
RS232	Recommended Standard 232	Interface standard for a cable-connected serial data transmission between a sender and receiver (also known as EIA232)
RS485	Recommended Standard 485	Interface standard for a cable-connected differential, parallel, and/or serial bus system (data transmission between a number of senders and receivers, also known as EIA485)
RTC	Real-Time Clock	Real-time clock
RZA	Raumzeigerapproximation	Space-vector approximation
S		
S1	-	Continuous operation
S3	-	Intermittent duty
SAM	Safe Acceleration Monitor	Safe acceleration monitoring
SBC	Safe Brake Control	Safe brake control
SBH	Sicherer Betriebshalt	Safe operating stop
SBR	Safe Brake Ramp	Safe brake ramp monitoring
SBT	Safe Brake Test	Safe brake test
SCA	Safe Cam	Safe cam
SCC	Safety Control Channel	Safety Control Channel
SD Card	SecureDigital Card	Secure digital memory card
SDC	Standard Drive Control	Standard Drive Control
SDI	Safe Direction	Safe motion direction
SE	Sicherer Software-Endschalter	Safe software limit switch
SESM	Separately Excited Synchronous Motor	Separately excited synchronous motor
SG	Sicher reduzierte Geschwindigkeit	Safely-limited speed
SGA	Sicherheitsgerichteter Ausgang	Safety-related output

Abbreviation	Source of abbreviation	Significance
SGE	Sicherheitsgerichteter Eingang	Safety-related input
SH	Sicherer Halt	Safe stop
SI	Safety Integrated	Safety Integrated
SIC	Safety Info Channel	Safety Info Channel
SIL	Safety Integrity Level	Safety Integrity Level
SITOP	-	Siemens power supply system
SLM	Smart Line Module	Smart Line Module
SLP	Safely Limited Position	Safely Limited Position
SLS	Safely-Limited Speed	Safely-limited speed
SLVC	Sensorless Vector Control	Sensorless vector control
SM	Sensor Module	Sensor Module
SMC	Sensor Module Cabinet	Sensor Module Cabinet
SME	Sensor Module External	Sensor Module External
SMI	SINAMICS Sensor Module Integrated	SINAMICS Sensor Module Integrated
SMM	Single Motor Module	Single Motor Module
SN	Sicherer Software-Nocken	Safe software cam
SOS	Safe Operating Stop	Safe operating stop
SP	Service Pack	Service pack
SP	Safe Position	Safe position
SPC	Setpoint Channel	Setpoint channel
SPI	Serial Peripheral Interface	Serial peripheral interface
SPS	Speicherprogrammierbare Steuerung	Programmable logic controller
SS1	Safe Stop 1	Safe Stop 1 (monitored for time and ramp)
SS1E	Safe Stop 1 External	Safe Stop 1 with external stop
SS2	Safe Stop 2	Safe Stop 2
SS2E	Safe Stop 2 External	Safe Stop 2 with external stop
SSI	Synchronous Serial Interface	Synchronous serial interface
SSL	Secure Sockets Layer	Encryption protocol for secure data transfer (new TLS)
SSM	Safe Speed Monitor	Safe feedback from speed monitor
SSP	SINAMICS support package	SINAMICS support package
STO	Safe Torque Off	Safe torque off
STW	Steuerwort	Control word
T		
TB	Terminal Board	Terminal Board
TEC	Technology Extension	Software component which is installed as an additional technology package and which expands the functionality of SINAMICS (previously OA-application)
TIA	Totally Integrated Automation	Totally Integrated Automation
TLS	Transport Layer Security	Encryption protocol for secure data transfer (previously SSL)
TM	Terminal Module	Terminal Module

Abbreviation	Source of abbreviation	Significance
TN	Terre Neutre	Grounded three-phase line supply
Tn	-	Integral time
TPDO	Transmit Process Data Object	Transmit Process Data Object
TSN	Time-Sensitive Networking	Time-Sensitive Networking
TT	Terre Terre	Grounded three-phase line supply
TTL	Transistor-Transistor Logic	Transistor-Transistor-Logik
Tv	-	Rate time
U		
UL	Underwriters Laboratories Inc.	Underwriters Laboratories Inc.
UPS	Uninterruptible Power Supply	Uninterruptible power supply
USV	Unterbrechungsfreie Stromversorgung	Uninterruptible power supply
UTC	Universal Time Coordinated	Universal time coordinated
v		
VC	Vector Control	Vector control
Vdc	-	DC-link voltage
VdcN	-	Partial DC-link voltage negative
VdcP	-	Partial DC-link voltage positive
VDE	Verband Deutscher Elektrotechniker	Verband Deutscher Elektrotechniker [Association of German Electrical Engineers]
VDI	Verein Deutscher Ingenieure	Verein Deutscher Ingenieure [Association of German Engineers]
VPM	Voltage Protection Module	Voltage Protection Module
Vpp	Volt peak to peak	Volt peak to peak
VSM	Voltage Sensing Module	Voltage Sensing Module
W		
WEA	Wiedereinschaltautomatik	Automatic restart
WZM	Werkzeugmaschine	Machine tool
\mathbf{x}		
XML	Extensible Markup Language	Extensible markup language (standard language for Web publishing and document management)
Y		
Z		
ZK	Zwischenkreis	DC link
ZM	Zero Mark	Zero mark
ZSW	Zustandswort	Status Word

A. 2 List of abbreviations

Index

Numbers

1020
Explanation of the symbols (part 1), 449 1021

Explanation of the symbols (part 2), 450
1022
Explanation of the symbols (part 3), 451 1030

Handling BICO technology, 452 2201

Connection overview, 454
2221
Digital inputs, electrically isolated (DI $0 \ldots$ DI 5), 455 2241

Digital outputs (DO $0 \ldots$ DO 1), 456
2250
Analog input 0 (Al 0), 457
2255
Analog inputs digital input (DI 11), 458
2260
Analog output 0 (AO 0), 459
2272
Two-wire control, 460
2273
Three-wire control, 461
2381
Control commands and interrogation commands, 463
2382
States, 464
2401
Overview PROFIdrive, EtherNet/IP, 466
2410
PROFIBUS, EtherNet/IP - addresses and diagnostics, 467
2420
PROFIdrive - telegrams and process data (PZD), 468
2440
PROFIdrive - PZD receive signals interconnection, 469
2441
PROFIdrive - STW1 control word interconnection $(\mathrm{p} 2038=2), 470$
2442
PROFIdrive - STW1 control word interconnection $(\mathrm{p} 2038=0), 471$

2446

PROFIdrive - STW3 control word interconnection, 472
2450
PROFIdrive - PZD send signals interconnection, 473
2451
PROFIdrive - ZSW1 status word interconnection (p2038 = 2), 474
2452
PROFIdrive - ZSW1 status word interconnection (p2038 = 0), 475
2456
PROFIdrive - ZSW3 status word interconnection, 476
2468
PROFIdrive - receive telegram, free interconnection via BICO (p0922 = 999), 477
2470
PROFIdrive - send telegram, free interconnection BICO (p0922 = 999), 478
2472
EtherNet/IP - status word, free interconnection, 479
2473
EtherNet/IP - control word / status word interconnection, 480
2501
Control word, sequence control (r0898), 495
2503
Status word, sequence control (r0899), 496
2505
Control word, setpoint channel (r1198), 497
2510
Status word 1 (r0052), 498
2512
Control word 1 (r0054), 499
2513
Supplementary control word (r0055), 500
2522
Status word, speed controller (r1407), 501
2526
Status word, closed-loop control (r0056), 502
2530
Status word, current control (r1408), 503
2534
Status word, monitoring functions 1 (r2197), 504 2536

Status word, monitoring functions 2 (r2198), 505

2537
Status word, monitoring functions 3 (r2199), 506 2546

Control word, faults/alarms (r2138), 507
2548
Status word, faults/alarms 1 and 2 (r2139 and r2135), 508
2610
Sequence control - Sequencer, 509
2634
Sequence control - missing enable signals, line contactor control, 510
2701
Simple brake control, 512
2800
Parameter manager, 514
2802
Monitoring functions and faults/alarms, 515
2804
Status words, 516
2810
STO (Safe Torque Off), 517
2813
F-DI (Fail-safe Digital Input), 518
2915
Standard telegrams, 520
3001
Overview of setpoint channel, 522
3010
Fixed speed setpoints, binary selection (p1016 = 2), 523
3011
Fixed speed setpoints, direct selection (p1016 = 1), 524
3020
Motorized potentiometer, 525
3030
Main/supplementary setpoint, setpointscaling, jogging, 526
3040
Direction limitation and direction reversal, 527
3050
Skip frequency bands and speedlimitations, 528
3070
Extended ramp-function generator, 529
6019
Application classes (p0096), overview, 531
6020
Speed control and generation of the torque limits, overview, 532
6030
Speed setpoint, accelerationmodel, 533
6035
Moment of inertia estimator, 534

6040
Speed controller with Kp_n-/Tn_n adaptation, 535
6060
Torque setpoint, 536
6220
Vdc_max controller and Vdc_min controller, 537
6300
U/f control, overview, 538
6301
U/f control, characteristic and voltage boost, 539
6310
U/f control, resonance damping and slip compensation, 540
6320
U/f control, Vdc_max controller, 541

6490

Speed control configuration, 542
6491
Flux controller configuration, 543
6630
Upper/lower torque limit, 544
6640
Current/power/torque limits, 545
6700
Current control, overview, 546
6710
Current setpoint filter, 547
6714
Iq and Id controllers, 548
6721
Id setpoint (PMSM, p0300 = 2), 549
6722
Field weakening characteristic, flux setpoint
(ASM, p0300 = 1), 550
6723
Field weakening controller, flux controller, Id setpoint (ASM, p0300 = 1), 551
6724
Field weakening controller (PMSM, p0300 = 2), 552
6730
Interface to the Power Module (ASM, p0300 = 1), 553
6731
Interface to the Power Module (PMSM, p0300 = 2), 554
6799
Display signals, 555
6820
Speed control and generation of the torque limits, overview (p0096 = 2), 563
6821
Current control, overview (p0096 = 2), 564
6822
Speed setpoint, precontrol balancing, acceleration model (p0096 = 2), 565

6823
Moment of inertia estimator (p0096 = 2), 566
6824
Speed controller with Kp_n/Tn_n adaptation) (p0096 = 2), 567
6826
Torque setpoint (p0096 = 2), 568
6827
Vdc_max controller and Vdc_min controller (p0096 = 2), 569
6828
Current/power/torque limits (p0096 = 2), 570 6832

Current setpoint (p0096 = 2), 571
6833
Iq and Id controllers (p0096 = 2), 572
6836
Id setpoint $($ PMSM, p0300 $=2 x x$, p0096 $=2), 573$
6837
Field weakening characteristic, flux setpoint (ASM, p0300 = 1, p0096 = 2), 574
6838
Field weakening controller, flux controller, Id setpoint (ASM, p0300 = 1, p0096 = 2), 575
6839
Field weakening controller (PMSM, p0300 = 2xx, p0096 = 2), 576
6841
Interface to the Power Module (ASM, p0300 = 1, p0096 = 2), 577
6842
Interface to the Power Module (PMSM, p0300 = 2xx, p0096 = 2), 578
6850
U/f control, overview (p0096 = 1), 557
6851
U/f control, characteristic and voltage boost (p0096 = 1), 558

6853
U/f control, resonance damping and slip compensation (p0096 = 1), 559
6854
U/f control, Vdc_max controller (p0096 = 1), 560
6856
U/f control, interface to the Power Module (ASM, p0300 = 1, p0096 = 1), 561
7010
Friction characteristic, 580
7017
DC braking (ASM, p0300 = 1), 581
7200
Sampling times of the runtime groups, 583
7210
AND 0 ... 3, 584

7212
OR 0 ... 3, 585
7214
XOR 0 ... 3, 586
7216
NOT 0 ... 5, 587
7220
ADD 0 ... 2, SUB 0 ... 1, 588
7222
MUL 0 ... 1, DIV 0 ... 1, 589
7224
AVA 0 ... 1, 590
7225
NCM 0 ... 1, 591
7226
PLI 0 ... 1, 592
7230
MFP 0 ... 3, PCL 0 ... 1, 593
7232
PDE 0 ... 3, 594
7233
PDF 0 ... 3, 595
7234
PST 0 ... 1, 596
7240
RSR 0 ... 2, DFR 0 ... 2, 597
7250
BSW0 ... 1, NSW 0 ... 1, 598
7260
LIM 0 ... 1, 599
7262
PT1 0 ... 1, 600
7264
INT 0, DIF 0, 601
7270
LVM 0 ... 1, 602
7950
Fixed value selection binary (p2216 = 2), 604
7951
Fixed value selection direct (p2216 = 1), 605
7954
Motorized potentiometer, 606
7958
Closed-loop control, 607
8005
Overview, signals and monitoring functions, 609
8010
Speed signals 1, 610
8011
Speed signals 2, 611
8012
Torque signals, motor blocked/stalled, 612
8016
Thermal monitoring motor, motor temperature status word faults/alarms, 613

8017
Motor temperature model 1 (I2t), 614
8018
Motor temperature model 2, 615
8019
Motor temperature model 3, 616
8020
Thermal monitoring, power module, 617
8022
Monitoring functions 1, 618
8023
Monitoring functions 2, 619
8050
Diagnostics overview, 621
8060
Fault buffer, 622
8065
Alarm buffer, 623
8070
Faults/alarms trigger word (r2129), 624
8075
Faults/alarms configuration, 625
8560
Command Data Sets (CDS), 627
8565
Drive Data Sets (DDS), 628
9204
Receive telegram, free PDO mapping ($\mathrm{p} 8744=2$), 482
9206
Receive telegram, Predefined Connection Set (p8744 = 1), 483
9208
Send telegram, free PDO mapping ($\mathrm{p} 8744=2$), 484
9210
Send telegram, Predefined Connection Set (p8744 = 1), 485
9220
CANopen control word interconnection, 486
9226
Status word, CANopen (r8784), 487
9310
Configuration, addresses and diagnostics, 489
9342
STW1 control word interconnection, 490
9352
ZSW1 status word interconnection, 491
9360
Receive telegram, free interconnection via BICO (p0922 = 999), 492
9370
Send telegram, free interconnection via BICO (p0922 = 999), 493

A

Acknowledgment
Adjustable, 638
Default, 638
IMMEDIATELY, 633
POWER ON, 633
PULSE SUPPRESSION, 633
Adjustable parameters, 13
Alarm
Cause, 638
Display, 630
Explanation of list, 634
Fault location, 635
General, 630
How to distinguish an alarm from a fault, 630
List of all alarms, 641
Message class, 635
Name, 635
Number, 634
Number range, 639
Remedy, 638
Alarm buffer, 620
Alarm value, 638
Analog inputs, 453
Analog outputs, 453
ASCII table, 732
Axxxx, 634

B

BI, Binector Input, 14
BICO technology, 452
Binector
Input (BI), 14
Output (BO), 14
Bit field (parameter), 21
BO, Binector Output, 14
Brake control, 511

C

Calculated, 15
Can be changed (parameters), 17
CANopen, 481, 488
CDS, (Command Data Set), 18, 626, 627
CI, Connector Input, 14
Closed-loop control
Technology controller, 607
Vector, 530
Vector (Dynamic Drive Control), 562
Vector (Standard Drive Control), 556
CO, Connector Output, 14
CO/BO, Connector/Binector Output, 14
Command data sets, 626

Connector
Input (CI), 14
Output (CO), 14
Control words, 462, 465
Cxxxxx, 634

D

Data Set, 626
Command Data Set, CDS, 18
Drive Data Set, DDS, 18
Encoder Data Set, EDS, 18
Motor Data Set, MDS, 18
Power unit Data Set, PDS, 18
Data set, 626
Command data set, 18
Drive data set, 18
Encoder data set, 18
Motor data set, 18
Power unit data set, 18
Data type (parameters), 16
DCBRAKE, 632
DDS, (Drive Data Set), 18, 626
DDS, (Drive Data Sets), 628
Dependency (parameter), 21
Description (parameter), 20
Digital inputs, 453
Digital outputs, 453
Direction of rotation limiting, 521
Direction reversal, 521
Directory
ASCII table, 732
Complete table of contents, 5
Index, 745
List of abbreviations, 735
Table of contents, function diagrams, 442
Display
Alarms, 630
Faults, 630
Display parameters, 13
Drive data sets, 626
Dynamic index (parameters), 18

E

EDS, (Encoder Data Set), 18

F

Factory setting, 20
Fault
Acknowledgment, 633, 638
Cause, 638
Display, 630
Explanation of list, 634
Fault location, 635
Fault reaction, 631, 638
General, 630

How to distinguish a fault from an alarm, 630
List of all faults, 641
Message class, 635
Name, 635
Number, 634
Number range, 639
Remedy, 638
Fault buffer, 620
Configuration, 622
Fault value, 638
Faults/alarms configuration, 620
Faults/alarms triggering (r2129), 620
Fixed speed setpoints, 521
Fixed values, 604, 605
Free function blocks, 582
Free interconnection via BICO, 462, 465
Friction characteristic, 580
Function diagram (parameters), 19
Function diagrams Dynamic Drive Control
Current control, overview (p0096 = 2), 564
Current setpoint (p0096 = 2), 571
Current/power/torque limits (p0096 = 2), 570
Field weakening characteristic, flux setpoint (ASM, p0300 = 1, p0096 = 2), 574
Field weakening controller (PMSM, p0300 = 2xx, p0096 = 2), 576
Field weakening controller, flux controller, Id setpoint (ASM, p0300 = 1, p0096 = 2), 575
Id setpoint (PMSM, p0300 = 2xx, p0096 = 2), 573
Interface to the Power Module (ASM, p0300 = 1, p0096 = 2), 577
Interface to the Power Module (PMSM, p0300 = 2xx, p0096 = 2), 578
Iq and Id controller (p0096 = 2), 572
Moment of inertia estimator (p0096 = 2), 566
Speed control and generation of the torque limits, overview (p0096 = 2), 563
Speed controller with Kp_n/Tn_n adaptation) (p0096 = 2), 567
Speed setpoint, precontrol balancing, acceleration model (p0096 = 2), 565
Torque setpoint (p0096 = 2), 568
Vdc_max controller and Vdc_min controller (p0096 = 2), 569
Function diagrams PROFIdrive, EtherNet/IP
EtherNet/IP - control word / status word interconnection, 480
Overview, 466
PROFIdrive - PZD receive signals interconnection, 469
PROFIdrive - PZD send signals interconnection, 473
PROFIdrive - receive telegram, free interconnection via BICO (p0922 = 999), 477
PROFIdrive - send telegram, free interconnection BICO (p0922 = 999), 478

PROFIdrive - STW1 control word interconnection (p2038 = 0), 471
PROFIdrive - STW1 control word interconnection (p2038 = 2), 470
PROFIdrive - STW3 control word interconnection, 472
PROFIdrive - telegrams and process data (PZD), 468
PROFIdrive - ZSW1 status word interconnection (p2038 = 0), 475
PROFIdrive - ZSW1 status word interconnection (p2038 = 2), 474
PROFIdrive - ZSW3 status word interconnection, 476
PROFIdrive, EtherNet/IP - addresses and diagnostics, 467
Status word, free interconnection, 479
Function diagrams vector control / U/f control
Application classes (p0096), overview, 531
Current control, overview, 546
Current setpoint filter, 547
Current/power/torque limits, 545
Display signals, 555
Field weakening characteristic, flux setpoint (ASM, p0300 = 1), 550
Field weakening controller (PMSM, p0300 = 2), 552
Field weakening controller, flux controller, Id setpoint (ASM, p0300 = 1), 551
Flux controller configuration, 543
Id setpoint (PMSM, p0300 = 2), 549
Interface to the Power Module (ASM, p0300 = 1), 553
Interface to the Power Module (PMSM, p0300 = 2), 554
Iq and Id controllers, 548
Moment of inertia estimator, 534
Speed control and generation of the torque limits, overview, 532
Speed control configuration, 542
Speed controller with Kp_n-/Tn_n adaptation, 535
Speed setpoint, accelerationmodel, 533
Torque setpoint, 536
U/f control, characteristic and voltage boost, 539
U/f control, overview, 538
U/f control, resonance damping and slip compensation, 540
U/f control, Vdc_max controller, 541
Upper/lower torque limit, 544
Vdc_max controller and Vdc_min controller, 537
Function diagrams, brake control
Simple brake control, 512

Function diagrams, CANopen
CANopen control word interconnection, 486
Receive telegram, free PDO mapping ($\mathrm{p} 8744=2$), 482
Receive telegram, Predefined Connection Set (p8744 = 1), 483
Send telegram, free PDO mapping (p8744 = 2), 484
Send telegram, Predefined Connection Set (p8744 = 1), 485
Status word, CANopen (r8784), 487
Function diagrams, data sets
Command Data Sets (CDS), 627
Drive Data Sets (DDS), 628
Function diagrams, diagnostics
Alarm buffer, 623
Fault buffer, 622
Faults/alarms configuration, 625
Faults/alarms trigger word (r2129), 624
Overview, 621
Function diagrams, fieldbus interface
Configuration, addresses and diagnostics, 489
Receive telegram, free interconnection via BICO (p0922 = 999), 492
Send telegram, free interconnection via BICO (p0922 = 999), 493
STW1 control word interconnection, 490
ZSW1 status word interconnection, 491
Function diagrams, free function blocks
ADD 0 ... 2, 588
AND 0 ... 3, 584
AVA $0 \ldots 1,590$
BSW 0 ... 1, 598
DFR 0 ... 2, 597
DIF 0, 601
DIV 0 ... 1, 589
INT 0, 601
LIM 0 ... 1, 599
LVM 0 ... 1, 602
MFP $0 \ldots 3,593$
MUL 0 ... 1, 589
NCM 0 ... 1, 591
NOT 0 ... 5, 587
NSW 0 ... 1, 598
OR $0 \ldots 3,585$
PCL 0 ... 1, 593
PDE 0 ... 3, 594
PDF 0 ... 3, 595
PLI 0 ... 1, 592
PST 0 ... 1, 596
PT1 0 ... 1, 600
RSR 0 ... 2, 597
Sampling times of the runtime groups, 583
SUB 0 ... 1, 588
XOR $0 \ldots 3,586$

Function diagrams, general information
Explanation of the symbols (part 1), 449
Explanation of the symbols (part 2), 450
Explanation of the symbols (part 3), 451
Handling BICO technology, 452
Function diagrams, input/outputterminals
Analog input 0 (AI 0), 457
Analog inputs digital input (DI 11), 458
Analog output 0 (AO 0), 459
Connection overview, 454
Digital inputs, electrically isolated (DI 0 ... DI 5), 455
Digital outputs (DO 0 ... DO 1), 456
Three-wire control, 461
Two-wire control, 460
Function diagrams, internal control/status words
Control word 1 (r0054), 499
Control word, faults/alarms (r2138), 507
Control word, sequence control (r0898), 495
Control word, setpoint channel (r1198), 497
Sequence control - missing enable signals, line contactor control, 510
Sequence control-Sequencer, 509
Status word 1 (r0052), 498
Status word, closed-loop control (r0056), 502
Status word, current control (r1408), 503
Status word, faults/alarms 1 and 2 (r2139 and r2135), 508
Status word, monitoring functions 1 (r2197), 504
Status word, monitoring functions 2 (r2198), 505
Status word, monitoring functions 3 (r2199), 506
Status word, sequence control (r0899), 496
Status word, speed controller (r1407), 501
Supplementary control word (r0055), 500
Function diagrams, PROFlenergy
Control commands and interrogation commands, 463
States, 464
Function diagrams, Safety Integrated Basic Functions
F-DI (Fail-safe Digital Input), 518
Monitoring functions and faults/alarms, 515
Parameter manager, 514
Status words, 516
STO (Safe Torque Off), 517
Function diagrams, Safety Integrated PROFIsafe
Standard telegrams, 520
Function diagrams, setpoint channel
Direction limitation and direction reversal, 527
Fixed speed setpoints, binary selection (p1016 = 2), 523
Fixed speed setpoints, direct selection (p1016 = 1), 524
Main/supplementary setpoint, setpointscaling, jogging, 526
Motorized potentiometer, 525
Overview, 522

Ramp-function generator (extended), 529
Skip frequency bands and speedlimitations, 528
Function diagrams, signals and monitoring functions Overview, 609
Function diagrams, signals and monitoringfunctions
Monitoring functions 1, 618
Monitoring functions 2, 619
Motor temperature model 1 (I2t), 614
Motor temperature model 2, 615
Motor temperature model 3, 616
Speed signals 1, 610
Speed signals 2, 611
Thermal monitoring motor, motor temperature status word faults/alarms, 613
Thermal monitoring, power module, 617
Torque signals, motor blocked/stalled, 612
Function diagrams, Standard Drive Control
U/f control, characteristic and voltage boost (p0096 = 1), 558

U/f control, interface to the Power Module (ASM, p0300 = 1, p0096 = 1), 561
U/f control, overview (p0096 = 1), 557
U/f control, resonance damping and slip compensation (p0096 = 1), 559
U/f control, Vdc_max controller (p0096 = 1), 560
Function diagrams, technology controller
Closed-loop control, 607
Fixed value selection binary (p2216 = 2), 604
Fixed value selection direct (p2216 = 1), 605
Motorized potentiometer, 606
Function diagrams, technology functions
DC braking (ASM, p0300 = 1), 581
Friction characteristic, 580
Fxxxx, 634

G

General
About parameters, 12
on faults and alarms, 630
on function diagrams, 448

I

IASC, 632
Index
Parameters, 13
Index (parameters), 20
Industrial security, 9
Input/output terminals, 453
Analog inputs, 453
Digital inputs, 453
Internal control words, 494
Internal control/status words, 494

J

Jogging, 521, 526

L

Linked parameters, 13
List
Abbreviations, 735
ASCII table, 732
Binector inputs (BI parameters), 428
Binector outputs (BO parameters), 431
Command data sets, 419
Connector inputs (Cl parameters), 430
Connector outputs (CO parameters), 433
Connector/binector outputs (CO/BO parameters), 436
Drive data sets, 420
Encoder data sets, 427
Faults and alarms, 641
Message ranges, 639
Motor data sets, 425
Parameter ranges, 22
Parameters for quick commissioning, 439
Parameters for write protection and know-how protection, 437
Parameters, all, 25
Power unit data sets, 427
List of abbreviations, 735
Load monitoring, 608

M

MDS, Motor Data Set, 18
Message buffer, 620
Message class, 635
Monitoring functions, 608
Motorized potentiometer, 521, 606

N

Name
Alarm, 635
Fault, 635
Normalization, 17
Number
Alarm, 634
Fault, 634
Parameters, 13
Number range
Alarms, 639
Faults, 639
Parameters, 22

0

OFF1, 631
OFF1_DELAYED, 631
OFF2, 631
OFF3, 632

P

Parameter
Normalization, 17
Parameters
Access level, 15
Bit field, 21
Calculated, 15
Can be changed, 17
Command data sets, 419
Data type, 16
Dependency, 21
Description, 20
Drive data sets, 420
Dynamic index, 18
Encoder data sets, 427
Full name, 14
Function diagram, 19
Index, 13, 20
Linked parameters, 13
List for quick commissioning, 439
List of all parameters, 25
List of the binector inputs, 428
List of the binector outputs, 431
List of the connector inputs, 430
List of the connector outputs, 433
List of the connector/binector outputs, 436
Motor data sets, 425
Number, 13
Number range, 22
Parameter values, 20
Power unit data sets, 427
Recommendation, 20
Safety guidelines, 21
Short name, 14
Unit group, 18
Unit selection, 18
Values, 20
Password for access level 4, 15
PDS, (Power unit Data Set), 18
Process data, 462, 465
PROFIBUS, 462, 465
PROFIdrive, 462, 465
PROFINET, 462, 465
pxxxx, 13

Q

Quick commissioning (parameters), 439

R

Ramp-function generator, 521
Reaction to faults, 631
Resetting faults, 638
rxxxx, 13

S

Safety instructions
Fundamental, 7
General, 8
Industrial security, 9
Safety instructions (parameter), 21
Safety Integrated
Basic functions, 513, 519
Extended Functions, 513, 519
Setpoint channel, 521
Signals, 608
Skip frequency bands, 521
Speed control
Vector, 530
Vector (Dynamic Drive Control), 562
Vector (Standard Drive Control), 556
Speed signals, 608
Status words, 462, 465
Internal, 494
STOP2, 632

T

Technology controller, 603
Technology functions, 579
Telegrams, 462, 465
Temperature evaluation, 453
Thermal monitoring, 608
Torque signals, 608

U

Unit (parameter), 18

V

Values (parameter), 20
Vector control
Table of contents, 530
Vector control (Dynamic Drive Control) Table of contents, 562
Vector control (Standard Drive Control) Table of contents, 556
Version
List of all parameters, 25
List of faults and alarms, 641

Siemens AG
Digital Factory
Motion Control
P.O. Box 3180

91050 ERLANGEN
GERMANY

[^0]: Note:
 The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).

[^1]: The inhibited interconnections can only be changed again after setting value 999

[^2]: Description: Parameters for the PROFINET data set "Identification and Maintenance 1" (I\&M 1).
 This information is known as "System identifier" and "Location identifier".

[^3]: 3.14 U/f control, Standard Drive Control (p0096 = 1)

[^4]:

[^5]: 1. Undervoltage condition of the electronics power supply
 2. Overvoltage condition of the electronics power supply
